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ABSTRACT
Micro-aerial vehicle (MAV) swarms are a new class of mobile
sensor networks with many applications, including search
and rescue, urban surveillance, radiation monitoring, etc.
These sensing applications require autonomously navigat-
ing a high number of low-cost, low-complexity MAV sensor
nodes in hazardous environments. The lack of preexisting
localization infrastructure and the limited sensing, comput-
ing, and communication abilities of individual nodes makes
it challenging for nodes to autonomously navigate to suitable
preassigned locations.

In this paper, we present a collaborative and adaptive al-
gorithm for resource-constrained MAV nodes to quickly and
efficiently navigate to preassigned locations. Using radio fin-
gerprints between flying and landed MAVs acting as radio
beacons, the algorithm detects intersections in trajectories of
mobile nodes. The algorithm combines noisy dead-reckoning
measurements from multiple MAVs at detected intersections
to improve the accuracy of the MAVs’ location estimations.
In addition, the algorithm plans intersecting trajectories of
MAV nodes to aid the location estimation and provide de-
sired performance in terms of timeliness and accuracy of
navigation. We evaluate the performance of our algorithm
through a real testbed implementation and large-scale phys-
ical feature based simulations. Our results show that, com-
pared to existing autonomous navigation strategies, our al-
gorithm achieves up to 6× reduction in location estimation
errors, and as much as 3× improvement in navigation suc-
cess rate under the given time and accuracy constraints.
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1. INTRODUCTION
Many hostile, dangerous, or otherwise inaccessible environ-
ments (such as urban search and rescue, environmental mon-
itoring, surveillance, etc.), situational awareness is needed.
However, in these dangerous scenarios, manual deployment
of sensors is often not feasible.

In such scenarios, autonomously navigating MAV swarms
to a set of goal locations, in accordance with the needs of
domain experts, can provide significant benefit. Further,
utilizing a large number of low-cost, low-complexity mobile
sensor nodes, as opposed to using a limited number of so-
phisticated robots, can be more cost effective and provide in-
creased robustness through redundancy. In addition, small
lightweight mobile sensor nodes provide greater safety as the
effects of their collisions with the objects or persons in the
indoor environment are inconsequential.

MAV swarms are an emerging class of networked mobile sys-
tems with widespread applications in such domains. These
swarms consist of miniature aerial sensor nodes with limited
individual sensing, computing and communication capabili-
ties [1, 2]. Initial work in the operation of MAVs has focused
on outdoor or highly instrumented environments that rely
on external sensors to control individual devices [3, 4]. How-
ever, such centralized sensing approaches are hampered in
indoor environments by obstructions (walls, furniture, etc.).
At the same time, reliance on sensing infrastructure implies
requirement for a large deployment of support sensors cov-
ering all the locations that a MAV may visit [5]. Thus these
approaches are only applicable in pre-surveyed locations.



This paper presents DrunkWalk, a technique for cooperative
and adaptive navigation of swarms of micro-aerial sensors
in environments not formerly preconditioned for operation.
The key focus behind this networked MAV swarm research is
to rely on collaboration to overcome limitations of individual
nodes and efficiently achieve system-wide sensing objectives.

In DrunkWalk, the MAV swarm self-establishes a tempo-
rary infrastructure of a few landed MAV’s acting as radio
beacons. Using radio signature or fingerprints from bea-
con nodes, the algorithm detects intersections in trajectories
of exploring mobile MAV nodes. The algorithm combines
noisy dead-reckoning measurements from multiple MAVs at
the detected intersections to improve the accuracy of the
MAVs’ location estimates. Most importantly, the algorithm
adaptively plans trajectories of MAV nodes according to the
certainty of their location estimations – directing movement
to improve location estimates when certainty is low, and di-
recting MAV to the goal location when certainty of location
estimates is high. The adaptive strategy enables DrunkWalk
to improve the location estimation accuracy and success rate
of navigation under given time and accuracy constraints.

The main contributions of this paper are:

• An adaptive planning algorithm for navigation that en-
ables the swarm to collaboratively achieve up to 6× re-
duction in location estimation errors, and as much as 3×
improvement in navigation success rate under the given
time and accuracy constraints.
• A planning algorithm that determines the quality of lo-

cation estimations and uses it to adaptively plan node
motion.
• Real MAV testbed experiments and large scale physical

feature based simulations using radio signatures collected
from the physical world and empirically determined sensor
noise models validating our assumptions.

The rest of this paper is organized as follows. Section 2 gives
a high level overview of the architecture and operation of the
system. Section 3 gives a detailed technical description of
the various algorithms presented in the paper. Section 4
evaluates and analyzes the system through extensive simu-
lations and validates assumptions through MAV testbed ex-
periments. Further discussion of some extra system details
are stated in Section 5. In Section 6, we describe related
work and discuss the state-of-the-art infrastructure-free nav-
igation techniques in context of MAV swarm deployment.
Finally, we draw conclusions and summarize our contribu-
tions in Section 7.

2. OVERVIEW
Potential MAV swarm sensing applications will require mo-
bile sensors to autonomously navigate to desired locations in
operating environments with no localization infrastructure.
In this paper, we address the problem of how a network of
mobile sensors can be navigated to pre-determined positions
under time and accuracy constraints.

2.1 Operation & Architecture
The system begins operation with a swarm of MAV’s being
introduced into the operating environments. We make the

Figure 1: The figure shows the architecture of
our navigation system. The mobile MAV no-
des send dead-reckoning sensor data and radio
signatures to a base station. The base runs the
DrunkWalk estimation and planning algorithm
and issues movement commands to individual
MAV nodes.

assumption that a coarse map of the building is available and
can be utilized by domain experts to pre-determine suitable
placement of sensors. This is a valid assumption in most
scenarios, as emergency response personnel have access to
the rough floor-plans of buildings through city registries, and
thanks to increased availability of indoor maps tailored to
location based services (e.g., indoor Google maps).

The proposed system has 3 major operational phases: setup,
estimation and planning (the latter two proceed in conjunc-
tion):

• Setup: The system autonomously establishes a transient
infrastructure of stationary MAV nodes acting as wireless
beacons. These nodes land upon being introduced into the
area and remain stationary during the process. The ob-
jective of the stationary nodes is to enable mobile MAV
nodes to obtain radio signatures or fingerprints of loca-
tions traversed on their paths. These nodes use a simple
dispersion algorithm [6, 7] that lets them spread out in
the environment without any estimation of their location.
• Estimation: The system then desires to estimate the

locations of nodes in order to guide them to their goal
locations. To realize this, the system first uses dead reck-
oning sensors such as an optical flow velocity sensor and
magnetometer (in our test MAV platform) to get a rough
estimate of the motion path of mobile nodes. Second, the
system uses radio fingerprints, collected by mobile nodes
from the self-established wireless beacons, to determine
snapshot points, i.e. location points that were previously
visited by other nodes or by itself. Finally, the system
uses the snapshot points to combine location estimates
from multiple nodes and collaboratively improve location
estimations of the entire swarm.
• Planning: Having estimated locations, the system plans

paths for each node that 1) leads to subsequent goal posi-
tions and 2) improves location estimation accuracy. The
quality of the planned path depends greatly on the ac-
curacy of the initial location estimate of nodes. A bad
location estimate will render any attempt to plan a deter-
ministic path useless – when the nodes don’t know where
they are, they cannot plan a correct path to their destina-
tion.



Our system thus considers the quality of location esti-
mation in planning node paths. The path planner com-
mands nodes movement such that they increase the num-
ber of snapshot points and potentially improve location
estimates when the quality of their estimates is likely to
be low. On the other hand, when the location estimates
are likely to be more accurate, the planner uses the map
to direct them to their designated goal locations.

Figure 1 shows the architecture of the system. Through dis-
persion algorithm, the system deploys Stationary MAV
Nodes that act as wireless beacons. Mobile MAV Nodes
explore and obtain dead-reckoning measurements from their
on-board sensors and radio RF-signatures from the station-
ary beacons. The mobile nodes relay this to a Base. The
Base stores a database of known radio signatures (Signature
DB) that is used to determine snapshot point in node paths
and apply corrections to their dead-reckoning estimates. The
corrected location estimates are used by the Base in conjunc-
tion with a coarse map (indoor layout with location of walls
and doors) of the environment to command the subsequent
movements of MAV nodes.

2.2 Improving Location Estimation Through
Swarms

The core idea behind our estimation approach is to use rel-
atively large number of mobile sensors in the swarm to col-
laboratively reduce the error. This is achieved by detecting
when nodes move over the same space in the environment
and combining their individual location estimations at these
points. Errors in dead reckoning measurements are mainly
due to noise in inertial sensors that are independent across
nodes and time [8]. Thus, combining estimates from mul-
tiple nodes and propagating corrections to them improves
their location estimations. Figure 2 illustrates the on-line
process of determining snapshot point from radio measure-
ments.

2.2.1 Determining Snapshot Points
The location estimation requires a node to be able to de-
termine when it visits a location previously visited by itself
or by another nodes - a snapshot. The snapshot point pro-
vides the opportunity to combine estimations from multiple
independent mobile nodes and improve location estimations.

The system determines a snapshot point using radio finger-
prints collected by mobile nodes from the self-established
beacon nodes. The radio fingerprints are collected in an
online fashion, i.e., the nodes discover fingerprints as they
explore the space. These fingerprints are sent to the Base
and matched with a database of previously discovered sig-
natures. If the signature matches an existing signature in
the database (decided by a cosine distance and a threshold),
the point is classified as a snapshot point and a correction
can be applied to the current location estimation. If the sig-
nature does not match any existing signatures, it is added
to the database as a new entry.

2.2.2 Combining Estimates at Snapshot Points
The process of combining location estimations must be per-
formed carefully. The naive approach would be to take the
average of all location estimates for a particular snapshot

Figure 2: The figure shows the process of de-
termining snapshot points. (a) Node 1 moves
and obtains a radio signature from stationary
MAV. This is entered into the the Base Signa-
ture DB as new signature. (b) When Node 2
visits the same location, its collected radio sig-
nature matches existing signature and a correc-
tion can be performed at the Base.

point. However, this approach does not consider the nature
of the underlying distribution of noise in location estimations
that often does not follow a normal distribution especially
in indoor environments.

Combining estimations is a chicken and egg problem that
requires a snapshot point to estimate and update its own
location from visiting mobile nodes, and subsequently, use
the updated location to correct the estimates of the visiting
mobile nodes.

To achieve this, we employ a particle filter based approach.
A particle filter [9] is a Bayesian estimation method to esti-
mate system state based on multiple noisy sensor measure-
ments. We use a particle filter to track the position and
orientation of each mobile node. Similarly, we use a particle
filter to track the position of each snapshot point as it is
discovered and visited by the MAV nodes. Every visit to
a snapshot point by a mobile node results in the the mo-
bile node correcting the estimation of the particles of the
snapshot point, which in turn corrects the estimations of
the particles of the mobile node. The various estimation al-
gorithms are described in detail in Section 3.

2.3 Adaptive Path Planning
We described how a snapshot point between the paths of no-
des can be utilized to improve location estimates. Planning
paths is thus the second chicken and egg problem encoun-
tered in navigation. Better location estimates are needed by
nodes to navigate to predetermined regions quickly. How-
ever, at the same time, achieving better location estimations
may require nodes to take detours (to find snapshot points)
costing time and energy. The planning component of our
system seeks to make a suitable trade-off between these as-
pects of navigation.

2.3.1 DrunkWalk
In order to reach the goal regions, we use an indoor lay-
out with location of walls and doors of the environment. It



should be noted that the algorithm does not require high
quality maps with information of the position of obstacles.
Such rough maps are generally available or easy to obtain
in most application scenarios.

The rough map enables us to bias the direction of node
movement towards predetermined goal regions, if the cur-
rent location of the node in the map can be reasonably de-
termined. However, due to noisy sensors, the location of in-
dividual nodes cannot always be estimated correctly, which
makes it difficult to consistently plan correct paths. The
system attempts to solve this by operating in two modes:

• Exploration: In this mode, the MAV node attempts to
seek snapshot points that can potentially improve the lo-
cation estimates of the MAV node. This is executed when
the quality of location estimations (determined by the en-
tropy of the tracking particle filter distribution) is low.
• Navigation: In this mode, the MAV node attempts to

follow the direction of the bias from the graph using the
estimated location from the DrunkWalk algorithm. This
is executed when the quality of location estimates is high.

It is easy to see that the performance of the navigation
step depends on the outcome of exploration step. How-
ever, the exploration step requires extra use of resources
that increases the time of navigation. Therefore, the Drunk-
Walk algorithm seeks to optimize this trade-off by adaptively
switching between these two modes.

3. DESCRIPTION
This section provides a detailed description of the major
components of our proposed system. First, this section de-
scribes how the location and orientation of the MAVs and
the positions of the signatures are estimated over time using
a set of particle filters. A separate particle filter is associ-
ated to each MAV in the team and each RF-signature being
localized in space. Therefore, particles estimating the posi-
tion and orientation of the MAVs include the components
cx, cy, cφ, whereas particles estimating the location of the
signatures include components sx, sy for the position. As
described in Section 2, a base station exchanges information
with the MAVs (commands and measurements) and main-
tains a database of known signatures (see Figure 1). Due
to the limited on-board computational power on the MAV,
our current implementation performs all computations in
the base.

3.1 Particle Filter Background
A particle filter is a Bayesian estimation method using a
finite number of elements (so called particles) to represent
a non-parametric probability density. It was introduced in
the fifties [10] and became popular in robotics in the last
two decades [9].

As a specific implementation of a more general recursive
Bayes filter under the Markov assumption, it requires as-
sumption of availability of two probabilistic models, namely
the state evolution model (often called motion model in mo-
bile or robotic applications) and the measurement model.
Assuming the unknown state to be estimated at time t is

indicated by xt, the state evolution model provides

p(xt|xt−1, ut) (1)

where ut is the known command given to the system at time
t. The measurement model, instead, is given by

p(zt|xt) (2)

where zt is the measurement at time t. Due to the Markov
assumption, xt is conditionally independent from xk with
k < t − 1 once xt−1 is known. Similarly, given xt, the
measurement zt is conditionally independent from any other
variable. Note that one does not need to commit to specific
distributions in Eq. 1 and Eq. 2, e.g., they do not have to
be Gaussian distributions. The generic algorithm to propa-
gate a posterior using a particle filter is given in Algorithm
1, where we mostly follow the notation presented in [9]. The
algorithm starts with a set of M particles X estimating the
posterior of xt−1, i.e., the state x at time t − 1. Given the
latest command ut and measurement zt, it produces a new
set of M particles providing an updated posterior estimate

for x at time t. The ith particle in Xt, x[i]
t , represents the ith

possible hypothesis about the state at time t. Algorithm 1
shows the generic particle filter algorithm. The first for loop
creates a new set of M particles sampling the motion model
from the set of existing particles, while the second for loop
implements the so-called importance resampling. The set of
particles provides a discrete approximation for the posterior.

Data: Xt−1, ut, zt
Result: Xt

1 X ← ∅;
2 Xt ← ∅;
3 for i← 1 to M do

4 x
[i]
t ← sample ∼ p(xt|x[i]

t−1, ut);

5 w
[i]
t ← p(zt|x[i]

t );

6 X ← X ∪ {< x
[i]
t , w

[i]
t >};

7 end
8 for i← 1 to M do

9 draw j with probability α w
[j]
t ;

10 Xt ← Xt ∪ {x[j]
t };

11 end

Algorithm 1: Generic particle filter algorithm

3.2 MAV Location Tracking
In this subsection, we show how the generic particle fil-
ter estimator can be specialized to estimate the location of
the MAVs. To reduce the computational complexity, rather
than implementing a centralized particle filter jointly esti-
mating the location of all the MAVs, we associate a particle
filter to each MAV. Assuming there are NM MAVs involved
in the navigation task, the system then creates and updates
NM particle filters. Each filter is initialized with M = 100
particles uniformly distributed in the area. All computa-
tions take place on the base station.

3.2.1 Prediction from Motion Models
For the prediction step, it is necessary to use a generative
law to implement the particle creation in line 4 of Algorithm
1. To this end, we use equations similar to the ones given in
[7]. Let the command at time t be ut = (vt, ωt), where vt is



the translational velocity and ωt is the rotational velocity.
Note that the control system always generates commands in
which only one of the two components is different from 0,
i.e., the MAV either translates or rotates, but does not make
both movements at the same time. Then, a new particle is
generated as

 cx
cy
cφ

[i]

t

=

 cx
cy
cφ

[i]

t−1

+ δt

 vt cos(cφ
[i]
t−1)

vt sin(cφ
[i]
t−1)

ωt

 (3)

where δt is the time interval between two commands. The
correctness of the equation follows form the assumption that
only one of vt and ωt can be different from 0. Noise is
added to the translational and rotational velocities as per
the empirically obtained actuation noise models p(nv) and
p(nω) from our test MAV platform, but can be specified as

per the specific sensor or MAV platform used. Thus, v
[i]
t

and ω
[i]
t are obtained as:

v
[i]
t = vt + n[i]

v , n[i]
v is drawn from p(nv) (4)

ω
[i]
t = ωt + n[i]

ω , n[i]
ω is drawn from p(nω) (5)

where vt and ωt are the nominal commands. In our sim-
ulations, according to [7], p(nv) and p(nω) are specified as
normal distributions with µ = 0 and σ is expressed as a
percentage of the value of vt or ωt.

3.2.2 Correction from Measurements
The correction step hinges on the weights assigned to the
particles (line 5 in Algorithm 1). Each MAV is equipped
with a magnetometer sensor returning a measurement for its
heading. Moreover, RF-signature snapshot provides another
measurement. These two measurements are asynchronous
in the sense that, while the on-board heading sensor can be
queried after each command is executed, signature match-
ing occurs only when revisiting a location associated with a
known signature. In the following, we therefore separately
describe, how the two different weights are computed, given
that they are generated and used (via resampling) in sepa-
rate stages.

The heading measurement is straightforward to integrate.
According to former experimental measures [11], the nomi-
nal heading returned by the sensor is affected by Gaussian
noise with a known variance σ2 (σ = 40 degrees to be pre-
cise). Therefore, for the heading weight we set

p(zt|xt) = fN ,σ2(zt − cφ[i]
t ) (6)

where fN ,σ2 is the density probability of a Gaussian with 0

mean and variance σ2, and the argument zt − cφ[i]
t is nor-

malized to account for the 2π period.

The process is substantially different for RF-signature snap-
shot points. In this case, rather than computing p(zt|xt),
we determine w

[i]
t through a two steps process. 1) When

a signature is measured, the first step is to communicate

with the known signatures database to determine whether
the signature is new or has been encountered already (either
by the same MAVs or a different one). If the database de-
termines the signature is new, the MAV does not perform
the second step and does not compute weights (however, the
signature is stored in the database and a new particle filter
is created; see section 3.3 for details.) 2) On the contrary, if
the database determines that a signature snapshot points is
taking place, the second step starts. First, on the database
side, the particle filter estimating the position of the signa-
ture being revisited is updated (see section 3.3 for details.)
After the RF-signature particle filter has been updated, each
particle in the MAV particle filter is assigned a weight as fol-
lows. A GMM is created starting from the particles in the
signature being matched. Such GMM is a bidimensional
probability density function with the following equation:

fGMM (x, y) =
1

M

M∑
i=1

f iN ,Σ(x, y) (7)

where f iN ,Σ is a bidimensional Gaussian distribution with

mean µ = [s
[i]
x s

[i]
y ]T and covariance matrix Σ (a diagonal

matrix with value 2 on the main diagonal). Then, each
particle is assigned the weight

w
[i]
t ← fGMM (cx

[i]
t , cy

[i]
t ). (8)

After all weights have been computed, resampling can take
place as described in Algorithm 1.

3.2.3 Adding Particles Using Coarse Map
Due to the unavoidable errors in the estimation process, we
implemented an additional step to counter the formerly men-
tioned particle depletion problem. After the new set Xt has
been created, we determine the location with the highest
number of particles. Let vd be this location, and let N
be the set of neighbor nodes according to the coarse map.
Then, the 25 particles with the lowest weight are discarded
and replaced by an equal number of particles generated us-
ing a random distribution over the space associated with the
nodes in N . The rationale behind this step is to generate
particles to recover errors due to the erroneous determina-
tion that a transition from a room to the next effectively
took place.

3.3 Particle Filter for Snapshot Points
We now describe how the spatial location of the signatures
can be estimated using a set of particle filters. For the MAVs
case, we do not compute a centralized estimation, but we
rather associate a filter with each signature to be tracked.
This estimation process has two main differences with the
position and orientation estimation for the MAVs. First,
the number of signature locations to be estimated is not
known upfront. So new filters need to be created on-the-fly
when a new signature to be localized is identified. Second,
signatures do not move. Therefore the estimation process
does not include a prediction step, only a correction step.
As for the MAVs, each filter includes 100 particles.

3.3.1 Initialization from MAV Particles
As described in the previous subsection, a new signature
is generated when the known signatures database receives
a query from one of the MAVs with an RF-signature that



cannot be matched to any of the formerly discovered ones.
In this case, a new entry in the database is created and a
new particles filter is instantiated. The initial set of particles
for this new filter is copied from the particles of the vehicle
that discovered the feature, while discarding the component
related to heading because it is irrelevant for the signature
estimation process.

3.3.2 Correction from MAV Particle Filter
Correction happens when a MAV queries signature database
with a signature that can be matched with one of the entries
already discovered. In this case, Algorithm 1 is executed for
the signature filter, with the exception of line 4, because

no prediction takes place. The weight for w
[i]
t for the ith

particle is computed as follows. First, the position of the
MAV that generated the snapshot point is determined by
taking the average of its particles. Note that this average is
implicitly weighted, because through the resampling process,
particles with higher weight will be included more often in
the particle set (see line 9 in Algorithm 1). As a result,
they will be counted multiple times when computing the
average. Let x be the computed average position of the

MAV generating the match, and let s
[i]
t−1 be the position of

the ith particle in the signature particle filter at time t− 1,

and let di =
∥∥∥x̄− s[i]

t−1

∥∥∥
2

be the Euclidean distance between

the expected position of the MAV and the particle. The
weight of each particle at time t is then defined as

w
[i]
t = Fd,δ(d+K)− Fd,δ(d−K) (9)

where Fd,δ is the cumulative density function of a Gaussian
distribution with mean d and variance δ. This formula is
based on our experimental testbed showing that revisits are
correctly detected when the displacement between the orig-
inal and the new position is within K meters. The specific
values for δ and K depend on the number of anchors and
are further described in Section 4.5.3. Once weights have
been computed, correction for the estimate of the signature
particle filter can then take place through resampling, as
described in Algorithm 1.

3.3.3 Database of Fingerprints
In order to help location estimation correction with snap-
shot points after each movement, the system maintains a
database of fingerprints. A fingerprint at a specific location
is a set of RSSI values from different stationary nodes mea-
sured by the MAV and stored in a dictionary data structure.
When the node arrives at a new location, it calculates the
cosine similarity between the newly discovered fingerprint
and the fingerprints stored in the database. A pre-defined
threshold Tsig is used to decide whether it is a new or known
fingerprint.

3.4 DrunkWalk Planning
In this section, we describe how the system plans the paths
of MAV nodes with location estimates of varying quality in
order to deploy quickly. Figure 3 shows a flowchart of the
planning algorithm.

3.4.1 Coarse Map
The system uses the layout with location of walls and doors
of the environment to extract a coarse map. The doors are

Figure 3: The figure shows the flowchart of the
DrunkWalk planning algorithm. The planner
adaptively changes between random walk and
graph biased movement based on the entropy of
particle filters tracking respective MAV nodes.

usually selected as the destination where we navigate the
MAVs.

The coarse map makes very few assumptions about the qual-
ity of the map but provides a way to bias the motion of MAV
nodes towards designated locations.

3.4.2 Entropy as Quality of Location Estimates
The entropy of a random variable x can be defined as the
expected information that the value of x carries. In the
discrete case, it is given by

H(x) = E[− log2 p(x)] (10)

which represents the number of bits required to encode using
an optimal encoding, assuming that p(x) is the probability
of observing x. The entropy can therefore be used as an
indication of the uncertainty of the estimate of a particle
filter. The lower the entropy the better the certainty of the
location estimate is, and vice versa. For the particle filter,
we calculate the entropy [9] of the weights at time t as

Ht = −
M∑
i=1

w
[i]
t log2 w

[i]
t . (11)

3.4.3 Exploration
When the entropy of the particle filter is high (> thresh-
old TH), the system seeks to primarily improve the location
estimates. The intuition here is that with an incorrect esti-
mation of current location, using the bias from the graph is
likely to be incorrect. This also results in cases where the



Figure 4: The figure shows the floor plan of 6
rooms with a hallway used for physical feature
based simulation and real testbed experiments.
The MAVs start from the entrance of the build-
ing and are navigated to different goal areas.

MAV may get stuck and can potentially perform worse than
a purely random deployment strategy.

With this in mind, the planner employs a random walk strat-
egy to direct the motion of MAV nodes. With random walk,
the likelihood of nodes discovering snapshot points increases
and so does the likelihood of improving their location esti-
mates. This is referred to as the exploration step.

3.4.4 Navigation
Correspondingly, when the uncertainty of location estimates
is low (Ht < TH), the planner commands the nodes to follow
the bias indicated by the coarse map. With a more accu-
rate location, likelihood of nodes following the bias and then
reaching the intended destination increases.

A key point in choosing the directional bias from the graph
is that it is sampled based on the distribution of particles
in the node’s particle filter. For example, consider a node
with 20 particles indicating its position as room 1 and there-
fore requiring the node to go north-west to exit the room,
while 80 particles indicate the node is in room 2 and must
move south. In this case, the planner samples the movement
direction according to the distribution of particles over the
nodes of the graph, i.e., the node has a 20% chance of be-
ing commanded to move north-west and a 80% chance of
receiving a south command.

3.4.5 Collision Recovery Strategy
MAV platforms have very limited sensing capability and of-
ten do not employ sophisticated obstacle detection sensors.
Proposed MAV platforms [1] rely on their low weight and
often use collisions themselves to discover obstacles. How-
ever, a strategy is needed in dealing with collision so as to
prevent MAV nodes from being stuck and enable them to
back off from corners and crevices and seek out openings.
This is especially useful when location estimates are inaccu-
rate. The planner employs a random exponential back-off
strategy, where nodes move in randomly chosen direction
(uniformly from a discrete number of directions) for a time
duration that increases exponentially with the number of
recent collisions. This is implemented by keeping a counter
for collisions in a certain time-window. The counter is decre-
mented with time if no new collisions are encountered.

4. EVALUATION
In this section, we evaluate the performance of our system in
planning MAVs paths through physical feature based simu-
lation and real experiments on a MAV testbed. Both simu-
lation and real experiments are conducted in a building with

Figure 5: The figure shows the average and
standard deviation of location estimation errors
at different flying duration heading for the near
destination using DrunkWalk and DRMB from
5 experiments. Drunkwalk achieves around 2m
location estimation errors on average and 1-
1.5m standard deviation.

multiple rooms connected with a hallway as shown in Fig-
ure 4. The MAVs start from the entrance and are navigated
to different goal areas (rooms).

The evaluation focuses on the following aspects:

• Characterizing the performance of the system in terms
of 1) navigation duration and 2) average accuracy of lo-
cation estimations in comparison to existing navigation
approach.
• Testing the robustness of the system with changing pa-

rameters, such as number of stationary MAV nodes, noise
of sensors, and radio fingerprint accuracy.
• Validating the assumptions of the simulation experiments

through real MAV testbed experiments.

For both testbed experiments and simulation, we compare
our DrunkWalk algorithm to another online navigation strat-
egy that does not require any location infrastructure. We
briefly describe it below:

• Dead-Reckoning with Map Bias (DRMB): Dead-
reckoning with Map Bias is an infrastructure-free tech-
nique used to estimate a node’s location in unknown en-
vironments [12]. This method uses measurements from
motion sensors, optical flow and gyroscope, to estimate
the change in position of the node. Having an estimate of
location, we then use the map to bias the direction of the
node’s movement similar to DrunkWalk.

4.1 Testbed Experiment Setup
To validate our system in a realistic setting, we implement
our algorithm on a server and the SensorFly [1] [13] MAV
testbed. The SensorFly platform used in our test has an
8-bit 16Mhz AVR AtMega128rfa1 micro-controller, a 3-axis
accelerometer, a 3-axis gyroscope, a 2-axis optical flow ve-
locity sensor, a 3-axis magnetometers, a ultrasonic altitude
sensor and a XBee radio [14]. The platform has a flight time
of 6-10 minutes. The SensorFly nodes are capable of trans-
lational and rotational motion directed by on-board PID
control algorithms utilizing feedback from the on-board sen-
sors.



Figure 6: The figure shows the cumulative dis-
tribution function (CDF) of location estimation
errors to arrive at near destination using both
DrunkWalk and DRMB from a typical run.

In our setup, we manually fly 8 MAVs on a 4m× 28m arena
shown in Figure 4. Six nodes are allowed to disperse and
deploy as beacons at initialization, while 2 nodes fly to seek
out the destinations. The nodes are introduced to the rooms
at the entrance and navigated to 3 kinds of goal destinations:
near destination (room 2), medium destination (right door
of room 4) and far destination (room 5). In addition, a laser
range finder is used to track the location of the nodes as
ground truth.

4.2 Testbed Experiment Results
We utilize the MAV testbed to illustrate the location estima-
tion errors from short to long distances to compare perfor-
mances and robustness of DrunkWalk with that of DRMB.

Figure 5 compares the performance and robustness of Drunk-
Walk and DRMB at different phases of navigation duration.
We plot the average and standard deviation of location es-
timation errors from 5 experiments at different % of navi-
gation duration. It is noted that we stop the experiments
at 600 seconds even if the drones do not arrive at the des-
tination since this is the typical flying time of SensorFly
node. At the first 20% of the navigation duration, Drunk-
Walk performs similarly as DRMB due to lack of snapshot
points to correct location estimation errors. After this ini-
tial period, DrunkWalk’s snapshot point correction main-
tained location estimation errors within the range of 1.5m
to 2m. In contrast, the error of DRMB kept accumulating to
larger than 3m. This is because multiple measurements at
snapshot points can correct the location estimation errors in
DrunkWalk. In addition, after 30% of the navigation time,
the standard deviation of DrunkWalk location estimation is
also 30%− 60% smaller than DRMB approach. This shows
DrunkWalk is more reliable than DRMB.

Figure 6 shows cumulative distribution function (CDF) of lo-
cation estimation errors using DrunkWalk and DRMB from
a typical experiment. In DrunkWalk, corrections from snap-
shot points help keep errors within 2.5 meters. In compari-
son, location estimation error of DRMB remains unbounded.
More than 50% of the time, DRMB has more than 3 meters
error, compared to less than 1 meter error for DrunkWalk.

To illustrate the performance of DrunkWalk and DRMB for
medium and far destinations, we use Figures 7 and 8 to
show single run experiment results. We further evaluate
them through simulated results in section 4.3. Note that

Figure 7: The figure shows the location esti-
mation error over time using DrunkWalk and
DRMB to the medium destinations. Mobile no-
des with DrunkWalk arrive at the destination
earlier than those with DRMB due to their ca-
pability to limit the location estimation errors.

Figure 8: The figure shows the location esti-
mation error over time using DrunkWalk and
DRMB to the far destinations. It is noted that
we do not plot all the data for mobile node 1
since it fails to arrive at the destination before
the battery was exhausted (600 seconds).

besides the node using DRMB in the upper plot in Figure
8, the lines end when nodes reach their destination. The
mobile node 1 failed to arrive at the far destination before
600 seconds when the battery was exhausted.

For both medium and far destinations, in the first 20 sec-
onds, similar to navigation to near destination, DrunkWalk
has similar location estimation errors with DRMB. After
this initial period, adequate snapshot points help Drunk-
Walk to limit the location estimation errors while the er-
ror of DRMB keeps accumulating. This shows that multi-
ple measurements at snapshot points in DrunkWalk do help
limit location estimation errors. The higher location esti-
mation accuracy from DrunkWalk leads to shorter (around
50%) navigation duration. It should be also noted that when
using DRMB, mobile node 1 fails to arrive at the far des-
tination before the battery died (600 seconds) while mobile
node 2 arrives at the destination in around 170 seconds. This
shows the unreliability of DRMB. On the other hand, both
mobile node 1 and 2 with DrunkWalk arrive at the medium
and far destination within similar durations. This shows the
stability of DrunkWalk with the help of snapshot points.



4.3 Physical Feature Based Simulation Envi-
ronment

We implemented a MAV simulation environment [15] for
the SensorFly MAV indoor sensor swarm to evaluate our
planning algorithms at large scale. The simulator includes a
realistic physical arena, as well as sensor noise models, MAV
mobility models and indoor radio signature collected from
the testbed described earlier.

For our evaluations, we configure the simulator as follows:

• Arena – We use a multi-room indoor scenario shown in
Figure 4, where nodes are required to autonomously nav-
igate to different goal areas. We collect the radio finger-
print from the real arena and feed them into the simulation
platform to evaluate our system. This represents a typ-
ical indoor apartment scenario where such systems may
be deployed in search and rescue applications. For more
complex maps, we concatenate on portions of the map in
figure 4.
• Node Sensors – The sensor nodes in the simulation are

modeled after the SensorFly [1] MAV platform, which is
also used in our testbed experiments described in sec-
tion 4.1. Each node has a XBee 802.15.4 radio and Dead-
Reckoning sensors – a gyroscope, an optical flow veloc-
ity sensor and an ultrasonic altitude measurement sen-
sor. Noise models are obtained through empirical mea-
surements on the testbed MAV platform.
• Node Mobility – The MAV nodes can turn by a com-

manded angle and move for a commanded time and veloc-
ity. We set the velocity to 1.0 m/s in accordance with the
testbed MAV parameters. The velocity of course varies in
accordance with the noisiness of the optical flow sensor,
that provides feedback to each MAV’s control algorithm.
• Simulation Time-steps – The simulation time-step is

chosen as 1sec that enables nodes to cover a distance of
0.8m to 1.2m in one simulation tick.
• Radio – The simulation supports estimating received sig-

nal strength (RSS) measurements between two nodes. The
RSS is collected in the real scenario.
• Destination – We adopt the far destination (room 6) as

the destination for simulation since this is the hardest situ-
ation which shows the baseline of the system performance
and robustness.

All experiments were performed 25 times with 10 MAVs (6
stationary nodes and 4 mobile nodes) to evaluate both the
performance and robustness of the system. We run the sim-
ulation for a time period of 600 seconds (1̃0 minutes) cor-
responding to the typical battery life of current generation
MAV nodes.

4.4 System Performance
This section evaluates our system performance under differ-
ent destination constraints and time limitations. A success-
ful navigation is achieved when the node can be navigated to
the destination within the given accuracy and time limita-
tion. For example, if the destination coordinate is (4 meters,
5 meters), the required accuracy is 1 meter and time limit
is 90 seconds, a successful navigation means that the mobile
node can arrive within the range of 1 meter from (4 meters,
5 meters) within 90 seconds.

Figure 9: The figure shows the navigation suc-
cess rate under different destination accuracy
constraints within 90 seconds for DrunkWalk
and DRMB.

Figure 10: The figure shows the success rate as
a function of time limitation under 0.5m des-
tination accuracy constraint, using DrunkWalk
and DRMB alone.

Figure 9 shows the navigation success rate as a function
of destination accuracy constraints within 90 seconds us-
ing DrunkWalk and DRMB. When the destination accuracy
is strict (0.5 meter), DrunkWalk achieves acceptable suc-
cess rate of around 40% while DRMB shows less than 5%.
This means that, under very strict destination accuracy con-
straint, DRMB cannot achieve the accuracy within the time
limitation. while DrunkWalk can still work with the help of
snapshot points. For less constrained destination accuracy
(1 meter to 2 meters), DrunkWalk shows consistently 30% to
40% higher success rate than DRMB. Futhermore, Drunk-
Walk achieves 100% success rate for even looser destination
accuracy constraint (2.5m) while DRMB can also get 84%
success rate. This is expected since above 2.5 meter range is
more than one half of the hallway width (4.0 meters), where
even with high location estimation errors, the mobile node
can still arrive at the destinations simply by following the
walls.

Figure 10 plots the success rate as a function of time limi-
tation for both DrunkWalk and DRMB under a 0.5m des-
tination accuracy constraint. Under a strict time limitation
constraint (60 seconds), even DrunkWalk only achieved 8%
success rate since it is not able to get enough snapshot points
to get accurate location estimation on the way to the des-
tination. When the time limitations are released (120 sec-
onds to 300 seconds), DrunkWalk shows 30% to 50% higher
success rate than DRMB. This is because DrunkWalk has
enough time to get snapshot points to correct the location



Figure 11: The figure shows the location esti-
mation error with varying number of station-
ary MAV nodes using DrunkWalk and DRMB.
DrunkWalk has an obvious decreasing trend
when the number of stationary MAV nodes in-
creases. It is noted that DRMB does not use
stationary MAV and its performance variance
in the figure is due to noise from sensors.

estimation errors, while the error of DRMB keeps accumu-
lating. After 300 seconds, DrunkWalk achieves 100% success
rate, while the success rate of DRMB becomes stable yet
still below 80%. This means that even with loose time con-
straints, DrunkWalk still gets more than 20% higher success
rate than DRMB.

4.5 System Robustness
In this section, we evaluate the robustness of our system
by examining the location estimation errors under different
system setups of both DrunkWalk and DRMB.

4.5.1 Number of Stationary MAV Nodes
Figure 11 shows the location estimation errors for differ-
ent numbers of stationary MAV nodes, where Drunkwalk
achieves 1.5× to 6× reduction for average and 1.5× to 4×
reduction for standard deviation compared to DRMB. This
shows its better capability and reliability to limit location
estimation error. This can be attributed to improvement on
matching snapshot with larger number of stationary nodes
broadcasting beacons. We can also see the decreasing trend
for both average and standard deviation in Drunkwalk when
the number of stationary nodes increase, which means that
increasing the number of stationary nodes do help enhance
performance.

4.5.2 Navigational Sensor Noise
The noise in motion measurements due to Dead-Reckoning
sensors is an important parameter in determining the even-
tual performance of the algorithm. Different MAV platforms
and operating environments might have different amount of
noise in their motion measurements, making it useful to an-
alyze the performance of the algorithm for varying levels of
sensor noise. For our simulations, in agreement with empir-
ical measurements on our MAV platform, we model noise
as a normal distribution with a standard deviation propor-
tional to the sensor measurement [7], [11]. For the optical
flow velocity sensor, a noise corresponding to a normal dis-
tribution with 0 mean and standard deviation of 20% of the
measured velocity value was added. For the magnetometer,

Figure 12: The figure shows location estimation
error as a function of optical flow noise using
DrunkWalk estimation and DRMB alone. The
noise per sensor is modeled as a normal distri-
bution with varying standard deviation. The
plot shows that DrunkWalk is able to correct
the DRMB error and maintain low standard de-
viation.

Figure 13: The figure shows location estima-
tion error as a function of magnetometer noise
using DrunkWalk estimation and dead reckon-
ing alone. The noise per sensor is modeled as a
normal distribution with varying standard devi-
ation. The plot shows that DrunkWalk is able
to correct the DRMB error and maintain low
standard deviation.

a 30◦ noise corresponds to a normal distribution with 0◦

mean and standard deviation of 30◦. The resultant noise in
DRMB location can be computed as per the motion update
equation [7], [11]. We apply sensor noise to both DRMB
and DrunkWalk estimates.

Figure 12 and 13 show the location estimation error in DRMB
and DrunkWalk for 10 nodes at various sensor noise levels.
In Figure 12, with optical flow noise level increasing from 0
to 50%, the average location estimation error of DrunkWalk
increases from 2.5m - 5.5m while that of DRMB goes up very
quickly to around 25 meters. The error increase is limited
due to the corrections from the multiple measurements at
the same snapshot points. In Figure 13, a faster increasing
trend (from 0.5 to 7.5 meters) is observed with the magne-
tometer noise increase. In addition, similar increasing trends
are observed for both DrunkWalk and DRMB. This indicates
that high noise from magnetometer weakens the correction
capability on location estimation errors. However, during



Figure 14: The figure shows location estima-
tion error as a function of signature matching
area for DrunkWalk and DRMB. To be noticed,
DRMB does not work with stationary MAV and
noise from sensors cause the performance vari-
ance.

operation, raw magnetometer noise can be mitigated by gy-
roscope data.

4.5.3 Radio Fingerprint Accuracy
Location estimation error depends on the resolution to iden-
tify snapshot on the node paths. This is accomplished by
using radio signature from stationary MAV nodes deployed
at the beginning. When a radio signature collected by a
node at a certain location is similar to a fingerprint in the
database, the system classifies it as snapshot and performs
the correction of location estimates. Thus, the performance
of DrunkWalk depends on the resolution of the fingerprints
matching, i.e., the area or distance within which two radio
fingerprints can be reliably classified as being at the same
location. If the criteria is too loose, incorrect points may be
matched together, which leads to few snapshot points.

Figure 14 shows location estimation error as a function of
signature matching area for DrunkWalk and DRMB for 10
nodes. We observe that DrunkWalk offers an improvement
of over 3× compared to DRMB even for a poor matching
resolution of 6m2. In case of MAV navigation, where the
low-cost of nodes makes it possible to deploy a relatively
large number of beacon nodes and attain high fingerprint ac-
curacies of around 1m2, DrunkWalk provides a much larger
reduction in error.

5. DISCUSSION
Several aspects of DrunkWalk planning algorithm warrant
further discussion and could probably lead to extensions to
DrunkWalk.

5.1 Parameter Tuning
We now describe how some key parameters affect the system
performance and give some guidance on tuning them.

We model all the sensor and noise distributions according to
real tests either by ourselves or from related work [7], [11].
After we got these values, we use them in our simulation
platform and the real system.

The signature matching resolution is affected by four pa-
rameters: number of stationary nodes, K and δ in Equation

9, and Tsig in section 3.3.3. Just as trilateration [16], we
need at least 3 stationary nodes to estimate x and y loca-
tion. However, due to the noise from radios, we need more
stationary beacons. In our experiments, we found 6 seems
to give good results. In order to tune K and δ in Equation
9 and the threshold Tsig for matching signatures, we refer
to our previous work [7]. After we decide the value of K, we
should set up the sample rate for snapshot points higher than
K/2 per sample according to the Nyquist-Shannon sampling
theorem [17] to ensure recover the radio map.

Another parameter, TH in section 3.4.3 affects the adaptive
planning strategy. The range of entropy is from 0 to log(N),
where N is the number of particles. How we set TH depends
on how we hope to bias our planning strategy. If we set TH
close to 0, that means we bias more to random walk. If we
set the TH close to log(N), that means we prefer to trusting
the location estimation more and bias more to follow the
coarse map.

Moreover, the reader can refer to [18] for guidance to set
up the number of particles . In our system, we adopt 100
particles for both motion tracking and snapshot points.

5.2 Different Layout Geometry
DrunkWalk can deal with more complicated layout geome-
try and should achieve similar performance, although it is
only tested and simulated in a layout shown in Figure 4.
The multiple rooms connected with a hallway in Figure 4
can be decomposed into basic unit for complicated layout
geometry. For a different layout geometry, we can regard it
as a concatenation of these basic units and set up a series
of intermediate destinations to help the drones arrive at the
final destinations. E.g. for those multiple interconnected
rooms with no hall layout, it is similar to the situation with
only room 1, room 2 and the hallway in Figure 4. In this
case, we regard the hallway as a loose room interconnected
with room 1 and room 2. In addition, by sensing the sudden
change in altitude and using a floor altitude look-up table,
DrunkWalk could also deal with multiple floor conditions.

5.3 Message Overhead
In our system, message overhead is composed of three parts:
1) Stationary drones broadcasting messages to flying drones
for RSSI measurements takes 1 bytes for each message. Each
stationary drones broadcast messages 10 times per second.
2) Flying drones report the RSSI values, heading informa-
tion and some other status information to the server ev-
ery second. The corresponding message size is 20 bytes for
each flying drone. 3) The link from server sending different
command messages to different flying drones every second.
The overhead of the command message takes 14 bytes. In
real systems, due to the collision, the real overhead is often
higher than the above value.

6. RELATED WORK
Works related to DrunkWalk maily fall into three domains:
sensor networks, robotics and mobile computing.

The sensor network domain has a number of works on de-
ploying and navigating mobile sensors [19, 20, 21, 22]. Howard
et al. [23, 24] present techniques for mobile sensor network



deployment in an unknown environment. Their approach
constructs fields such that each node is repelled by both ob-
stacles and by other nodes, enabling the network to spread
itself throughout the environment. Similarly, Batalin et
al. [25] present a deployment algorithm for robot teams with-
out access to maps or location. The robots are assumed to
be equipped with vision sensors and range finders and select
a direction away from all their immediate sensed neighbors
and move in that direction. The algorithm does not require
communication between nodes but also does not allow nodes
to be deployed at designated locations. The domain experts
have no control over the emergent deployment locations of
the nodes.

The problem addressed in this paper can also be seen as
an instance of the Simultaneous Localization And Mapping
(SLAM) problem that has been extensively studied in the
area of robotics [9, 26, 27, 28]. In fact, in the system we
described multiple MAVs try to localize themselves while at
the same time trying to acquire a representation of the spa-
tial distribution of the radio signatures. In recent years there
have been copious research in SLAM using either methods
based on Kalman filters [29, 30, 31, 32] or particle filters [33,
34, 35, 36]. Both approaches, however, have been mostly ap-
plied to solve instance of the SLAM problem where mobile
agents are equipped with sensors returning distances (e.g.,
laser range finders, or sonars) or cameras (either monocular
or stereo). Therefore, the ultimate objective of these solu-
tions to the SLAM problem was to map physical entities lo-
cated in the environment, like walls, obstacles, etc. Methods
based on Kalman filters are not applicable for the scenario
we consider because we are dealing with multimodal, non-
parametric probability distributions. Therefore, we opt for
a solution based on particle filters.

Approaches based on explicit perception and processing of
radio signals have been mostly aimed at implementing local-
ization systems with the underlying assumption that radio
signals were preliminarily collected off line to build so-called
map signals [37, 38, 39, 40]. A recent paper by Twigg et
al. [41] discusses a system where a robot autonomously dis-
covers the area within which connectivity with an assigned
WiFi base station is ensured. Their solution, however, solves
only the mapping side of the problem because the robot is
equipped with a laser range finder solving the localization
problem. In other words, RSS readings are mapped to the
physical space exploiting the availability of a different sensor
providing reliable localization.

For people carrying mobile devices, SLAM-like approaches
have recently been proposed that fuse WiFi-based RSS and
motion sensor data to simultaneously build a sensor map of
the environment and locate the user within this map. e.g.
radio fingerprint maps [42, 43, 44, 45], or organic landmark
maps [46, 47]. These approaches focus on the location es-
timation part of an orthogonal problem, where the motion
of users cannot be controlled and hence, does not involve
motion planning or deployment. Purohit et al. [7] present
a system for infrastructure-free single room sweep coverage
with MAV sensor swarms. Their approach, however, does
not involve the concept of location estimation and naviga-
tion and does not support navigating nodes to pre-assigned
destinations.

To the best of our knowledge, this paper presents the first
attempt to solve a SLAM problem using a swarm of MAVs
that combines location estimation and adaptively planning
to improve the success rate and accuracy of navigation.

7. CONCLUSION
This paper presents a system for collaborative and adap-
tive planning of resource-constrained MAV sensing swarms
to quickly and efficiently navigate to preassigned locations.
The system uses collaboration between nodes of the swarm
to overcome the sensing and computational limitations of
MAV nodes, and the challenging operating environments.
We comprehensively evaluate the system through large-scale
simulations and real MAV testbed experiments showing that
DrunkWalk achieves up to 6× reduction in location estima-
tion errors, and as much as 3× improvement in navigation
success rate under the given time and accuracy constraints.
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