
UNIVERSITY OF CALIFORNIA, MERCED

Environmental Monitoring with
Budget Constraints Using
Reinforcement Learning

A dissertation presented for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Azin Shamshirgaran

2024

Committee in charge:
Professor David Noelle
Doctor Shijia Pan
Professor Stefano Carpin, chair

Copyright © 2024
Azin Shamshirgaran
All rights reserved

Submitted by: Azin Shamshirgaran

Advisor: Stefano Carpin, Ph.D.
Electrical Engineering and Computer Science

Committee Members: David Noelle, Ph.D.
Cognitive and Information Sciences

Shijia Pan, Ph.D.
Electrical Engineering and Computer Science

Stefano Carpin, Ph.D. (chair)
Electrical Engineering and Computer Science

This dissertation is approved and accepted for publication by the committee.

David Noelle

Shijia Pan

Stefano Carpin

iii

Abstract

This dissertation explores decision-making under uncertainty in robotics systems
tasked with reconstructing a scalar field through sensing. In this task, each robot
must determine its next decision considering surrounding uncertainties, and environ-
mental and physical constraints. The complexity escalates in a multi-agent scenario,
as each robot must not only assess its course of action but also predict and consider
other robots’ movements and plans. This is crucial to avoid collisions and prevent
repetitive tasks among interacting agents. Our interest in this problem is motivated
by applications in precision agriculture, where robots are used to collect measure-
ments to estimate domain-relevant scalar parameters such as soil moisture or nitrates
concentrations. In particular, we focus on the implementation of budget-aware al-
gorithms, therefore casting our problem as an instance of constrained optimization,
whereby the goal is to collect good data, while being subject to constraints on the
available energy limiting the distance a robot can travel while fulfilling its mission.
This problem is formally called informative path planning (IPP) and is NP-hard.

For this approach to be efficient, it is necessary for robots to coordinate their
efforts to avoid unnecessary duplicate work or negative interference. As part of the
measurement collection task, sample locations can be provided in advance, chosen by
experts or randomly, or selected along the way in response to collected data. Central
to our work is the necessity to perform task allocation being aware of the distance a
robot can travel before its battery is depleted. From a practical standpoint, a robot
running out of energy in the middle of its data collection mission is a major problem,
as it will be necessary to manually recover it. Our task allocation strategy, therefore,
focuses both on avoiding duplicate work and on managing the energy constraints.

The purpose of this dissertation is to address each of these variations of the IPP
problem within the context of environmental map learning, in particular agricultural
field map learning. Different offline and online learning based solutions are provided
to address the IPP problem for single robot as well as multiple robots. The proposed
algorithms are analyzed on real-world datasets, and simulations are constructed and
shown to be efficient at guiding robots to sampling points under budget and environ-
mental constraints. The feasibility and performance of a single robot solution method
is evaluated and verified on a real Husky robot.

iv

Related Publications

[74] A. Shamshirgaran and S. Carpin. ”Reconstructing a spatial field with an au
tonomous robot under a budget constraint”. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8963–8970, 2022.

[76] A. Shamshirgaran, S. Manjanna, and S. Carpin. ”Distributed multi-robot online
sampling with budget constraints”. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 12658-12664, 2024.

[75] A. Shamshirgaran and S. Carpin. ”Environmental map learning with multi-
robots”. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2025 (to be submitted).

[22] Dechemi, D. Chatziparaschis, J. Chen, M. Campbell, A. Shamshirgaran, C.
Mucchiani, A. Roy-Chowdhury, S. Carpin, and K. Karydis. ”Robotic assess-
ment of a crop’s need for watering”. IEEE Robotics and Automation Magazine
(RAM), 30(4):52 – 67, 2023.

v

Acknowledgments

To begin with, I would like to thank Stefano Carpin for his continued support and
advice as my PhD advisor and the opportunity to work in his robotics laboratory
as a graduate student. Additionally, I would like to thank the other members of my
advisory committee, Shijia Pan and David Noelle, for reviewing my dissertation.

I wish to thank the co-authors of each of my research papers and conference
publications, which formed the basis of my research and extend my gratitude to the
UC Merced community, of which I have been a member for four years.

I would also like to take this opportunity to express my gratitude to my family
for their unwavering support throughout my entire life. I am forever grateful to have
them as part of my life.

I also must acknowledge financial support by the USDA-NIFA under award num-
ber 2021-67022-33452 (National Robotics Initiative) and IoT4Ag Engineering Re-
search Center funded by the National Science Foundation (NSF) under NSF Coop-
erative Agreement Number EEC-1941529.

vi

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Overview of Contributions . 3

2 Related Work 4
2.1 Robots Application in Agriculture . 4
2.2 Kriging and Gaussian Process Model 8
2.3 Single-Robot Informative Path Planning 10

2.3.1 Single-Robot IPP and Learning Based Methods 11
2.3.2 Single-Robot IPP and Other Methods 12

2.4 Multi-Robot Informative Path Planning 14
2.4.1 Multi-Robot IPP and Learning Based Methods 15
2.4.2 Multi-Robot IPP and Other Methods 16

3 Single-Robot IPP, Q-Learning Solution 18
3.1 Informative Path Planning . 18
3.2 Q-learning based Solution . 19

3.2.1 Markov Decision Process . 19
3.2.2 Q-Learning . 20
3.2.3 Reward Function . 21
3.2.4 Proposed Algorithm . 23

3.3 Results and Discussion . 25
3.3.1 Methods . 26
3.3.2 Metrics . 26
3.3.3 Results . 27

3.4 Conclusions . 31

4 Single-Robot IPP, MCTS Solution 34
4.1 MCTS based Algorithms . 34

4.1.1 Monte Carlo tree search (MCTS) 34
4.1.2 All Grid MCTS Algorithm (All-MCTS) 35
4.1.3 Sample Location MCTS Algorithm (RMCTS) 37

4.2 MCTS based Algorithms Results and Discussion 40
4.2.1 Methods . 40
4.2.2 Data Sets . 41
4.2.3 Metrics . 41
4.2.4 SYNT1 Results and Discussion 43

vii

CONTENTS viii

4.2.5 CAL-SOIL Results and Discussion 43
4.2.6 NASA1 and NASA2 Results and Discussion 45

4.3 Conclusions . 47

5 Multi-Robot IPP 48
5.1 Multi-Robot Informative Path Planning 48
5.2 MCTS based Algorithms . 49

5.2.1 MR-RMCTS . 49
5.2.2 MR-PMCTS . 51
5.2.3 MR-All-MCTS . 55

5.3 Results and Discussion . 57
5.3.1 Synthetic Dataset (SYNT1) Results 57
5.3.2 California Central Valley Soil Moisture Dataset (CAL-SOIL)

Experiment I Results . 59
5.3.3 California Central Valley Soil Moisture Dataset (CAL-SOIL)

Experiment II Results . 60
5.3.4 NASA Chlorophyll Concentration Dataset (NASA3) Results . 62

5.4 Conclusions . 62

6 Real World Experiments 66
6.1 Experiment Setup . 66

6.1.1 Platform . 66
6.1.2 Method . 67
6.1.3 Field Test Locations . 68

6.2 Results and Discussion . 69
6.2.1 Carol Tomlinson-Keasey Quad Results 69
6.2.2 Pistachio Orchard Results . 71

6.3 Conclusions . 72

7 Final Thoughts 78
7.1 Conclusions . 78
7.2 Future Work . 79

7.2.1 Improving Cost Model . 79
7.2.2 Further Experiments in the Field with Multiple Robots 79
7.2.3 Non-homogeneous Agents . 79
7.2.4 Approximation Methods . 79

Bibliography 81

List of Figures

1.1 Robot moving autonomously at pistachio orchard. 2

2.1 The Husky robot has been retrofit with a soil moisture sensor that can
be inserted in the soil to collect data (the soil moisture probe is visible
on the left). 5

2.2 (a) Working principle of the pressure chamber. (b) Manual visual
inspection is currently performed in the field for SWP analysis [22]. . 6

2.3 A mobile robot autonomously selects multiple measurement locations
for sample collection and retrieves leaves. These are later on conveyed
to a human operator who uses a pressure chamber to determine the
pressure defining the SWP [22]. 7

2.4 2D and 3D mesh plot of the Gaussian Process. 9

3.1 (a) The underlying distribution with all sample locations and (b) pre-
dicted distribution with all locations. 28

3.2 (a)-(b) Selected sample locations and reconstructed underlying distri-
bution with MGRRRT (B = 750). 28

3.3 (a)-(b) Selected sample locations and reconstructed underlying distri-
bution with MLRRT (B = 750). 29

3.4 (a)-(b) Selected sample locations and reconstructed underlying distri-
bution with MLRRT and (B = 2000). 29

3.5 Path followed by the robot running the MLRRT algorithm with budget
of 750. 30

3.6 Path followed by the robot running theMGRRRT algorithm with budget
of 750. 31

3.7 (a) The underlying distribution with all sample locations and (b) pre-
dicted distribution with all locations. 32

3.8 (a) The selected sample locations and (b) reconstructed underlying
distribution with MLRRT (B = 200). 32

3.9 (a) The selected sample locations and (b) reconstructed underlying
distribution with MOr (B = 200). 33

3.10 (a) The selected sample locations and (b) reconstructed underlying
distribution with MOrwP (B = 200). 33

4.1 Phases of the Monte Carlo tree search algorithm [86]. 35

ix

LIST OF FIGURES x

4.2 (a) Robot’s children set Ψ[ss] in the All-MCTS method. One step
neighbors are shown in blue and two step neighbors are in orange color.
(b) Candidate locations in the RMCTS method consisting of a set of
locations V scattered in the environment. 36

4.3 (a) The synthetic scalar field modeled by the mixture of Gaussian
distributions. (b) the scalar field modeled by the California Central
Valley soil moisture dataset. In both cases, warmer colors indicate
higher values for the underlying scalar field h. 42

4.4 (a) and (b) The scalar field modeled by the NASA chlorophyll concen-
tration dataset. In all cases, warmer colors indicate higher values for
the underlying scalar field h. 42

4.5 (a) and (b) The single robot path with B = 200 in SYNT1 environment. 44
4.6 (a) and (b) The single robot path with B = 100 in CAL-SOIL envi-

ronment. 46

5.1 (a)-(b) Three-robots sampling paths with budget B = 100 in synthetic
environment using MR-RMCTS and MR-MRS. 58

5.2 (a)-(b) Three-robots sampling paths with budget B = 100 in vineyard
environment using MR-RMCTS and MR-MRS. 61

5.3 (a)-(b) Three-robots sampling paths with budget B = 200 in vineyard
environment using MR-RMCTS and MR-MRS. 61

5.4 (a)-(b) Five-robots sampling paths with budget B = 100 in vineyard
environment using MR-RMCTS and MR-MRS. 62

5.5 (a)-(b) Five-robots sampling paths with budget B = 100 in vineyard
environment (CAL-SOIL) using MR-PMCTS and MR-All-MCTS. . . 64

5.6 (a)-(b) Five-robots sampling paths with budget B = 100 in ocean
environment using SMCTS and All-MCTS. 65

6.1 The Husky robot and the RTK base station. 67
6.2 Aerial view of the Carol Tomlinson-Keasey Quad area where the ex-

periments took place. 68
6.3 20 sample locations spread across the Carol Tomlinson-Keasey Quad

area. 69
6.4 Top view of the pistachio orchard . 70
6.5 Top view of the pistachio orchard with sensor placement 71
6.6 Robot moving autonomously at pistachio orchard. 72
6.7 Husky robot at Carol Tomlinson-Keasey Quad. 73
6.8 Posterior mean used as a sensory reading. 73
6.9 Reconstructed spatial field and visited sample points with B=5 and

B=7. 74
6.10 Reconstructed spatial field and visited sample points with B=10 and

B=12. 74
6.11 The Husky robot at one of the sample locations in the field. 75
6.12 Reconstructed spatial field and all 50 sample points. 75

LIST OF FIGURES xi

6.13 Reconstructed spatial field and visited sample points with B=100. . . 76
6.14 Reconstructed spatial field and visited sample points with B=300. . . 76
6.15 Reconstructed spatial field and visited sample points with B=500. . . 77

List of Algorithms

3.1 Q-Learning based Planner for robot R with limited budget B 24
4.2 Online All-MCTS planner for robot R with limited Budget B 38
4.3 Online RMCTS planner for robot R with limited Budget B 39
5.4 Online MR-RMCTS planner (executed by each robot Ri) 50
5.5 Online MR-PMCTS planner (executed by each robot Ri) 54
5.6 Online MR-All-MCTS planner (executed by each robot Ri) 56

xii

Chapter 1

Introduction

1.1 Purpose

Over the past few years, there has been a steady increase in the use of collabo-
rative team of robots for gathering information across multiple domains. Examples
of applications include search and rescue to locate survivors [58], ocean exploration
to map underwater terrain and monitor water quality parameters such as pH and
chlorophyll [85], and data gathering in agricultural settings for pesticide spraying,
seed sowing, as well as farm monitoring and sampling [22]. Figure 1.1 displays the
Husky robot platform gathering leaf temperature data from a pistachio orchard using
a multi-spectral camera. The question arises as to why we need to collect samples
from farms and orchards?

In light of the expected rise in world population, food supply must be ensured in an
urgent manner. In order to accomplish this, agricultural yields and water productivity
must be increased worldwide. In spite of this, water is a limited resource, and global
population growth and climate change are putting unprecedented pressure on it. It
is therefore necessary to implement precision automatic irrigation technologies that
take advantage of control theory in order to ensure sustainable and rational use of
water in irrigated crops.

A few decades ago, irrigation was done in so many ways, such as basin irrigation
system or flood irrigation system. In basin method, water is ponded over the entire
surface of the soil [104]. These days, there is a need for a more rational approach
to irrigation optimization. For instance, an automatic irrigation system in which
water is applied directly to plants’ roots by means of applicators (orifices, emitters,
porous tubing, perforated pipes, etc). A sprinkler irrigation system applies water
under pressure through perforated pipes or nozzles to form a spray pattern [104]. In
automatic irrigation, the key concept is feedback which is a mechanism, process, or
signal that controls the irrigation system. In the field of automatic irrigation, mea-
surements of soil (soil water potential), plant (stem water potential) and atmosphere
variables are used to determine the next irrigation dosage based on the consequences
of previous actions [66]. Physical sampling can be quite laborious and often vary
among different types of crops. Given the growing agricultural workforce shortages,
the labor-intensive nature of these measurements poses a severe limitation on how
many samples can be collected and analyzed, and restricts how growers and farm
consultants can assess local conditions and optimize operations in support of sustain-

1

CHAPTER 1. INTRODUCTION 2

able crop production. This is particularly critical in high-value perennial crops, such
as avocados, citrus, almonds, nuts, and vines. Hence, robotics and automation tech-
nology can be employed to support physical sampling. In this context, the capability
of deploying a coordinated team of robots to collect data is instrumental, as a team
of robots can collect more data per time unit, and also offers increased robustness to
individual failures.

For this approach to be efficient, it is necessary for robots to coordinate their
efforts to avoid unnecessary duplicate work or negative interference. As part of the
measurement collection task, sample locations can be provided in advance chosen
by experts, or randomly, or selected along the way in response to collected data.
Central to our work is the necessity to perform task allocation being aware of the
distance a robot can travel before its battery is depleted. In particular, we focus on
the implementation of budget-aware algorithms, therefore casting our problem as an
instance of constrained optimization, whereby the goal is to collect good data (in a
sense to be formally defined later), while being subject to constraints on the available
energy limiting the distance a robot can travel while fulfilling its mission.

Figure 1.1: Robot moving autonomously at pistachio orchard.

CHAPTER 1. INTRODUCTION 3

1.2 Overview of Contributions

The purpose of this dissertation is to address the challenges of decision-making
under uncertainty in robotics systems tasked with reconstructing a scalar field through
sensing. A multi-robot informative path planning (IPP) method aims to select paths
and sequence of sampling locations for each robot that maximize the quality of the
reconstructed scalar field while do not exceed the travel budget. In this setting, each
robot must determine its next decision considering surrounding uncertainties, and
environmental and physical constraints. The complexity escalates in a multi-agent
scenario, as each robot must not only assess its course of action but also predict and
consider other robots’ movements and plans. This is crucial to avoid collisions and
prevent repetitive tasks among interacting agents. This dissertation is motivated by
improving agricultural efficiency, but the algorithms presented can also be applied to
a wide range of scenarios, such as warehouse robot navigation.

This dissertation and its related publications make five major contributions. First,
informative path planning (IPP) within a predefined budget in a stochastic environ-
ment for a single robot is discussed. Second, three offline and online learning based
algorithms are presented, which are capable of solving these task planning problems
efficiently. These algorithms describe how to select the sequence of sampling locations
to yield an accurate Gaussian Process (GP) reconstruction as well as to determine
when the exploration should be concluded and move to final docking point. Third, an
extension to multi robot IPP within a predetermined budget is discussed, and a set
of heuristic learning based algorithms are presented which provide distributed online
policies for task planning in different environments. Fourth, a strategy is proposed to
update sampling locations on the fly to leverage data collected during the mission and
predict the next decision of other robots in the team to prevent multiple robots from
visiting and collecting data samples at the same location at the same time. Fifth,
a real-world experiments with a Husky robot are presented to verify the proposed
method.

In the remaining six chapters of this dissertation, different aspects of efficient task
planning solutions are discussed to solve the IPP problem. Chapter 2 provides a
summary of related literature for the specific types of problems discussed through-
out this dissertation. Chapter 3 describes an offline Q-Learning solution to solve the
single robot IPP problem. Chapter 4 discusses a budget-aware, online method based
on Monte Carlo Tree search (MCTS) for solving the single robot IPP problem. In
Chapter 5, the IPP problem is extended to multi-agent scenario focusing on avoiding
collisions, revisiting the same locations while managing budgets. A real-world ex-
periments with a Husky robot are presented in Chapter 6. Finally, Chapter 7 offers
concluding remarks on the methods presented in this dissertation and outlines a few
areas for future research.

Chapter 2

Related Work

2.1 Robots Application in Agriculture

There has been a labor crisis in American agriculture for decades, resulting in
the loss of $3.1 billion worth of food over the past decade [78]. According to the
USDA, farm labor employment has declined by 75 percent over the past 70 years [78].
In addition to being laid off by the pandemic, employees are likely to migrate to
industries that are highly attractive to them, such as technology or health care [26].
With this introduction, it is imperative that the agricultural industry be able to
address this issue in a more efficient manner.

Autonomous robots are finding more and more applications in agricultural indus-
try [99, 30]. Perhaps the most obvious tasks that would require ground robots for
automation are tasks that involve direct interaction with the plants and soil. One
such task that could be enhanced by robotics is the harvesting of fruit by robots [16].
Another application is pesticide spraying, which is a recurring task in nearly every
growing operation. Aside from spraying for pests, robots have been developed that
are capable of autonomously weeding orchards and vineyards where the robot can
remove weeds that are growing between vines and within rows without harming the
vine trunks [59]. Ground robots can also be used by farmers to sow seeds into the
ground [99]. Finally, ground robots can be used as part of a farm monitoring and
sampling system. Figure 2.1 shows the UC Merced, Robotics lab Husky robot which
has been retrofit with a soil moisture sensor that can be inserted in the soil to collect
data at preassigned locations, or at locations decided by the robot on-the-fly. These
samples must be collected over vast spatial domains and the utilization of robots
allows better use of the dwindling agricultural workforce. In these applications it
is often necessary to frequently collect data to monitor parameters such as water,
nitrates, nutrients, or to determine soil quality, or crop estimates [74].

Other non-agricultural information gathering can also be achieved with multi-
robots. Examples of applications include search and rescue to locate survivors [58],
ocean exploration to map underwater terrain [85].

Agricultural robotics and automation technology play an increasingly critical role
across several crop production stages to improve sustainability (e.g., water use op-
timization). Robotics has been applied for remote and proximal sensing, as well as
physical sampling [22]. The procedure of physical sampling and follow-on analysis of
plant specimens such as leaves or shoots, often constitutes the only accurate way to

4

CHAPTER 2. RELATED WORK 5

Figure 2.1: The Husky robot has been retrofit with a soil moisture sensor that can
be inserted in the soil to collect data (the soil moisture probe is visible on the left).

measure some essential parameters that affect crop production, such as stem water
potential (SWP) and nitrogen content which help determine a crop’s need for water-
ing and can only be accurately measured through the physical collection and analysis
of specimens such as leaves or shoots.

However, both physical sampling and specimen analysis can be quite laborious and
often vary among different types of crops. Given the growing agricultural workforce
shortages [12], the labor-intensive nature of these measurements poses a severe limi-
tation on how many samples can be collected and analyzed, and restricts how growers
and farm consultants can assess local conditions and optimize operations in support
of sustainable crop production. This is particularly critical in high-value perennial
crops, such as avocados, citrus, almonds, nuts, and vines. Hence, robotics and au-
tomation technology can be employed to support physical sampling and specimen
analysis.

SWP is a metric frequently used by agronomists and growers to optimize irrigation
schedules for crops [28], with the intent of reducing water waste and maximizing
profits [97, 70]. The current industry standard for obtaining SWP measurements is
the Scholander pressure chamber method [71], which involves the insertion of a leaf
sample into a pressure chamber with its stem’s excised end exposed (Figure 2.2 (a)).

After the sample is secured, a human operator slowly activates a valve to pressurize
the chamber while also observing the water expression at the end of the exposed stem
through a magnifying glass (Figure 2.2 (b)) [22].

The pressure necessary to force water out of the stem determines the SWP. The
process measures the capacity of the cells to retain water by pressurizing the leaf.
The less free water there is in the plant, the greater the pressure required to cause
the leaf to exude water.

When taken in pre-dawn conditions (i.e. performed before sunrise) and plant

CHAPTER 2. RELATED WORK 6

(a)

(b)

Figure 2.2: (a) Working principle of the pressure chamber. (b) Manual visual inspec-
tion is currently performed in the field for SWP analysis [22].

stomata are closed, the measurement is at equilibrium with soil moisture conditions.
Subsequent measurements can then precisely determine water deficit, and thus irri-
gation demand to meet evapotranspiration loss. A precise measurement of the SWP
is essential to assess the water deficit of the plant and to therefore adjust irrigation.
Given that 80% of managed freshwater in the US is consumed by agriculture [100]
and that evapotranspiration model estimates widely diverge [36], even modest im-
provements in irrigation practices can have huge impacts, especially in the semi-arid
southwestern US that periodically undergoes drought periods while providing a large
fraction of fruits and vegetables.

Some alternative methods have been proposed in recognition of the labor-intensive
steps involved in measuring SWP using the pressure chamber method. Some rely on
remote sensing using spectral reflectance or multi-spectral imaging to determine water
potential [105, 98]. In addition to their non-invasive characteristics, these methods are
scalable since they are intended to replace the pressure chamber for mass assessment
in a faster manner. Despite their initial promise, these methods are highly sensitive
to an intractable external factor, namely light variability due to weather and solar
movement. Zhao et al. [105] mounted multi-spectral cameras on a small UAV to take
high-resolution multi-spectral images of orchards for SWP prediction using the canopy
Normalized Difference Vegetation Index (NDVI), but mentioned the high variability
in data collected from different flights within the same day due to solar motion. Vila et
al. [98] used remote sensors and spectral reflectance as a proxy for SWP measurements
but had a low correlation coefficient and thus concluded this method cannot replace
a pressure chamber method. To minimize water loss through transpiration, it is
recommended to bag leaf samples with reflective foil bags for at least ten minutes prior
to excision [55]. While earlier literature was recommending making the measurements
on the spot and avoid transportation of samples, the work of [65] suggested immediate
storage of excised leaf samples in a cold and moist environment helps stabilize the

CHAPTER 2. RELATED WORK 7

sample’s water potential and preserve the condition for hours or even days, depending
on the plant species [65].

Since the concepts of spectral reflectance and imaging may not be mature yet for
this application, we must seek to directly automate the pressure chamber method
for assessing SWP. It is necessary to develop robotics and automation technology
tools that can help assess watering needs for tree crops. The primary focus lies in
automating the process of measuring SWP.

In one of our works [22], a mobile robot autonomously selects multiple measure-
ment locations for sample collection. The in-house designed end effector mounted on
the robot’s arm will then be used to retrieve the leaves. In addition, we used RGBD
and lidar points clouds to determine the potential leaf. When the robot has reached
the SWP analysis station, a human operator loads the samples into a machine-vision-
assisted pressure chamber to determine the exposed leaf stem’s wetness. Figure 2.3
outlines the overall idea.

Figure 2.3: A mobile robot autonomously selects multiple measurement locations for
sample collection and retrieves leaves. These are later on conveyed to a human oper-
ator who uses a pressure chamber to determine the pressure defining the SWP [22].

There are several factors that need to be considered in order for these automated
sample collection systems to be efficient and practical. In [42], the authors provided
a graphical user interface (GUI) for selecting waypoints and viewing samples. For
selecting informative waypoints, they compared human performance with adaptive
informative sampling algorithms. For selecting waypoints, humans and simulated
robots receive the same information. Using two entropy-based optimization criteria,
the simulated method iteratively selected waypoints using Gaussian Process regres-
sion.

Among the challenges for utilizing robots in precision agriculture are the need to

CHAPTER 2. RELATED WORK 8

interact with human workers and machinery, the size of farms, and the limited battery
life or fuel sources of robots. It can also be challenging to navigate in these environ-
ments. The survey [5] outlines some techniques developed specifically for farmland
localization and mapping and provides an overview of the challenges associated with
them. This recent review [69] provides a brief overview of robot path planning and
routing algorithms used in agriculture.

2.2 Kriging and Gaussian Process Model

There are many physical, chemical, and biological processes that interact to pro-
duce environmental features, such as soil moisture. The interactions between these
processes are so complex that the variation may seem random. Because of the com-
plexity and incomplete understanding of the processes, deterministic or mathematical
solutions to quantify the variation are not feasible. Consequently, random variables
and random processes have been introduced to suitably model these uncertainties..
For example, soil moisture, element concentrations in soil, and air temperatures are
considered as spatial random variables [27, 15].

A Gaussian Process (GP) is defined as a collection of random variables with joint
Gaussian distribution [57]. Let us consider y is the observed target value and modeled
as follows:

y =f(x) + ϵ

where ϵ ∼ N (0, σ2
n)

(2.1)

where x is the input vector and and f is the function value. We assume that the
observation value y differ from function value f(x) by additive Gaussian distribution
noise with zero mean and variance σ2

n. According to this modeling approach, f(x)
is modeled as Gaussian Process, f(x) ∼ GP(m(x), k(x, x′)) which is specified by its
mean function m(x) and covariance function k(x, x′) [77].

GP assumes that p(f(x1), ..., f(xn)) is jointly Gaussian with mean µ(X) and co-
variance Σij = k(xi, xj). For any data points, this process defines a joint Gaussian
distribution p(f |X) = N (f |µ,Σ). Now, the goal would be to predict the f(x) for a
value at locations that has not been visited [82].

Figure 2.4 shows the 2D and 3D mesh plot of the Gaussian Process. As it can be
seen, it is a mixture of four Gaussians with different centers and covariance matrices.
To reconstruct the GP accurately, the robot must visit all peaks (high values) as well
as valleys (low values).

Prediction with Noise-free Observations

In this case, the observations are {(xi, fi)|i = 1, 2, ..., n}. The ϵ in equation 2.1 is
considered as zero. The joint distribution of the training outputs f and test outputs

CHAPTER 2. RELATED WORK 9

Figure 2.4: 2D and 3D mesh plot of the Gaussian Process.

f∗ according to the prior is defined as follows:[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
where X and X∗ are training and test inputs. If there are n training points and n∗
test points then K(X,X∗) denotes the n x n∗ matrix of the covariances evaluated
at all pairs of training and test points, and similarly for the other entries K(X,X),
K(X∗, X∗) and K(X∗, X). So, we can define the noise-free predictive posterior as
follows [102]:

p(f∗|X∗, X, f) = N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))
(2.2)

CHAPTER 2. RELATED WORK 10

Prediction with Noisy Observations

In this case, Equation 2.1 would become as follows:

y = f(x) + ϵ

ϵ ∼ N (0, σ2
n)

cov(y) = K(X,X) + σ2
nI

(2.3)

The joint distribution of the training outputs f and test outputs f∗ according to the
prior is defined as follows:[

f
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
where X and X∗ are training and test inputs. If there are n training points and n∗
test points then K(X,X∗) denotes the n x n∗ matrix of the covariances evaluated
at all pairs of training and test points, and similarly for the other entries K(X,X),
K(X∗, X∗) and K(X∗, X). Once again, we can define the noisy predictive posterior
as follows [102]:

p(f∗|X∗, X, y) = N (K(X∗, X)([K(X,X) + σ2
nI])

−1y,

K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗))
(2.4)

Modeling environmental phenomena with these predictions has proven highly ef-
fective [21].

2.3 Single-Robot Informative Path Planning

With an increasing population, decreasing arable land, climate change, and a
declining skilled workforce, supplying food on a global scale is becoming increasingly
difficult. As a result, reducing the use of water and agrichemicals while increasing
productivity becomes increasingly important. Precision agriculture can be defined
as “the matching of agronomic inputs and practices to localized conditions within
a field and the improvement of the accuracy of their application” [25]. Essential
to this paradigm is accurate assessment of multiple quantities with spatiotemporal
variations, like evapotranspiration, nitrogen concentration, and others.

A key problem in IPP is how to handle the tradeoff originating by the necessity
to collect numerous samples while being constrained by how far a robot can travel
before its battery is depleted and needs recharging. In this context, planning a path
to ideally collect the best samples while not running out of fuel is of fundamental
importance. Informally speaking, the goal of IPP is to define a path through a set of
sampling locations allowing for the best estimate of the parameter being measured.
Depending on the application, sampling locations may be preassigned (and then the
robot has to select a subset of them), or may be determined on the fly. Owing to the

CHAPTER 2. RELATED WORK 11

intrinsic computational complexity of the problem, one has to settle for collecting a
sub-optimal subset of samples.

A distribution of spatial data can be modeled by a Gaussian Process (GP) de-
scribed in Section 2.2, and this approach is often used in agriculture [84, 81]. Com-
bined with this model, metrics such as mutual information (MI), entropy, or variance
can be used to guide the process of collecting samples to estimate a GP of the field.
While the IPP problem has been extensively studied in the past, we consider a harder
version where we also manage an assigned energy budget that is influenced by stochas-
tic travel costs. This makes this problem different and harder than the orienteering
problem that have been recently studied in a similar, yet simpler setting emerging in
precision agriculture [92]. This problem is harder because we investigated instances
where rewards are either incrementally discovered or reassigned comparing to orien-
teering where the reward is known upfront. The reason that we consider the stochastic
environment is because agricultural fields may change from time to time, which will
affect the cost of travel.

As path planning is an integral part of this process, in this section we review
selected works addressing some of the issues related to single robot IPP and path
planning.

2.3.1 Single-Robot IPP and Learning Based Methods

IPP can be solved in several ways, one of which is learning based methods. In
[101], the authors used Reinforcement Learning (RL) to solve the IPP problem. The
problem is defined as visiting a set of sample locations with a robot with a travel
budget. The nearest sample location with shortest path is selected and the reward
is assigned considering the budget. However, the authors did not consider a stochas-
tic and dynamic environment and exclusively choose the shortest path for the next
sampling location. In [44], the authors developed a constraint double Q-learning al-
gorithm to find the path for an aerial vehicle. To prevent the divergence issue of
Q-learning, two utility functions QA and QB were developed for decoupling action
selection from action evaluation and updating each of these Q-functions using the
value of the other one and choosing the action based on the argmax of the other
Q-function.

Various approaches can be used to solve reinforcement learning problems in which
constraints must be met. Lagrangian methods include constraints in the loss func-
tion, while another method restricts the action space directly before choosing the
next action. Our methods use a reward shaping technique. In [29], the authors
used the Lagrange multiplier method to combine the cost function with constraint
in order to determine the next action and analyze constrained Q-learning for robot
path planning in a grid environment to avoid the trap. To demonstrate that their
proposed method was able to find the better path, resulting in better return values
in each episode, they compared their method with baseline SARSA and Q-learning.
Using this method, there is no guarantee that the agent will satisfy the constraints

CHAPTER 2. RELATED WORK 12

mentioned in this problem at all points, which may result in undesirable behavior.
In [37], the authors proposed an off-policy reinforcement learning framework in which
the action space is limited in the Q-update in order to learn the optimal Q-function
for the constrained Markov Decision Process (CMDP). First, the safe set of states
is calculated for all constraints, then the deep Q-learning algorithm is applied. In
on-policy learning, the Q(s, a) function is learned from the actions the agent takes
using its current policy π(a|s). In off-policy learning, the Q(s, a) function is acquired
by taking different actions (for example, random actions). In [88], the authors inte-
grate the GP upper confidence bound (GP-UCB) with the Cross-Entropy method for
adaptive sampling in environmental sensing. This approach is designed to minimize
the number of sampling points needed while maximizing the accuracy of information
and environmental monitoring.

For single-robot and multi-robot informative path planning, Monte Carlo tree
search (MCTS) has recently gained a great deal of attention. The goal of MCTS is
to approximate the value of the actions that could be taken from the current state
and this is accomplished through iteratively building a search tree. Afterwards, the
best action will be chosen based on the tree policy [14]. In [19], a multi-objective
informative planning method referred to as Pareto Monte Carlo tree search was in-
troduced, which allows the robot to handle exploration versus exploitation based on
a multi-objective tree search model. The Pareto MCTS finds the optimal actions for
the current state until a given time budget is exhausted. The node selection problem
is treated as a multi-objective multi-armed bandit problem. For each child node, the
Pareto Upper Confidence Bound (Pareto UCB) is computed. An approximate Pareto
optimal set is then constructed. In the end, the best child node is randomly selected
from the Pareto optimal set. Their action selection process does not take the budget
into account.

In [67], deep reinforcement learning (DRL) was used to train an unmanned aerial
vehicle (UAV) to make decisions based on sensory data in order to improve infor-
mation collection rates and reduce mission time. They combined MCTS with a con-
volutional neural network (CNN) to learn information-rich actions in data collection
operations. The implementation of DRL for real-time UAV path planning can be
computationally expensive, and the trained model may not generalize well in real
situations. It is easy to generalize our MCTS-based model to any environment be-
cause it does not require training. In our problem, we address the selection of next
sampling location with learning methods where the robot itself learns to choose the
next sample point based on assigned budget, consumed and remaining energy, the
information and reward it gets by visiting each location and the stochastic noise of
the environment.

2.3.2 Single-Robot IPP and Other Methods

Sampling based path planning methods such as rapidly exploring random trees
(RRT-RRT*), rapidly exploring random graphs (RRG*), rapidly exploring informa-

CHAPTER 2. RELATED WORK 13

tion gathering (RIG*) and probabilistic roadmaps (PRM*) have been adapted to
tackle the IPP problem [20]. In [31], authors proposed a RIG-based algorithm for
incremental information gathering. They used mutual information as an information
criteria to maximize the information gathering with respect to the budget constraint.
In [34], rapidly exploring information gathering (RIG) algorithms are introduced to
solve the informative motion planning problem using iterative sampling. The authors
proposed three different RIG algorithm: RIG roadmaps to build up a roadmap of
possible trajectories; RIG tree to extend a tree of possible trajectories with a fixed
start point; and RIG graph to build a graph of solution trajectories with a fixed start
point. One of the limitations of these methods is the assumption of the availability
of a suitable near point for graph expansion which in some cases may result in task
failure. On the other hand, sampling-based methods have the advantage that they do
not require to discretize the environment as they work on continuous space. In [41],
probabilistic roadmaps (PRM), rapidly exploring random graphs (RRG) and rapidly
exploring random trees (RRT) algorithms are adapted as new algorithms. The nearest
neighbour location will always be selected according to various criteria. For instance,
based on k-nearest algorithm or among k random samples within a circle of radius r.
The robot moves to the selected location if it is feasible and not blocked by obstacles.
As in the previous papers, they also did not take the robot’s budget into account.

In [10], graph-based IPP for a single robot is discussed. The problem is finding a
path in a graph G that maximizes a submodular function f of the nodes visited by a
path from a node s to a node t. In the recursive greedy algorithm, the gain obtained
by adding a new partial path to the current set is recursively optimized. At each step
of recursion, all possible nodes for the path are tried, as well as all possible ways to
split the budget between the halves of the path. The algorithm calls itself recursively
to find the best path for the first half, then fixes that half and solves for the best path
for the second half.

An alternative approach to solve the problem of IPP is to use the model of the
environment to place the sensors and plan a path for a robot. This approach is more
similar to what we studied in [74], where we assumed that a set of potential sampling
locations is given upfront. GP is a powerful Bayesian approach used to model different
phenomena in natural environments [84]. Different kernels can be used to model prior
assumptions about the underlying function being estimated [72]. After modeling the
spatial field, one can then plan the path based on the model. In [48, 33] the authors
proposed a method for strategically placing sensors to maximize the amount of useful
information collected about the environment while considering limitations on com-
munication bandwidth or energy consumption. The greedy improvement algorithm
continues to add sensors until it reaches the near-optimal level of information. In [49],
they studied the problem of sensor placement based on maximizing mutual informa-
tion (MI) and it was shown that using MI criteria leads to a lower number of sensors
readings. In [47], the authors extensively discussed the submodularity property of
IPPs. Information gathering problems often involve submodularity which implies as
diminishing returns—meaning as a subset of sensors grows, the marginal gain from

CHAPTER 2. RELATED WORK 14

adding an element decreases. Therefore, there must be a trade-off between informa-
tion gathered and number of sensors. In IPP, submodular functions are utilized to
select a subset of items (such as locations or data points) to maximize information.
There is a limit to the number of sensors they can place, but including failure-tolerant
methods would be a good addition.

In [84], the authors study how to balance between the amount of sensing resources
(e.g., number of deployed robots, energy consumption, mission time) and the quality
of data collected. To this end, they formulated a constrained optimization problem
imposing a bound on the variance of the estimated field. The problem is then solved
finding measurement locations, planning a tour for a single robot to visit those mea-
surement locations and finally planning tours for multiple mobile robots. GP is used
to model the spatial parameter being estimated and later the traveling salesperson
with neighborhoods (TSPN) is used to find the best path for a single robot to visit
the location of interest. Finally, the multi robot version of the algorithm is proposed
to save operating time. This solution however, does not consider energy constraints.

In [62], an online IPP approach that adjusts the UAV’s course according to feed-
back from active classifications is presented. During this process, evolutionary opti-
mization and IPP techniques are combined to prioritize regions that are most infor-
mative for classification in continuous 3D space. In [63], the authors introduced a 3D
path planning framework that prioritizes informative portions of the terrain during
terrain monitoring with UAV. The proposed solution maximizes the information col-
lected about the terrain by optimizing the path. Their model has been extensively
tested in simulations and real-world experiments. Even though they considered a
time as a constraint in their method, it is not explicitly used in training the UAV for
action selection. In [11], the authors explored the problem of reconstructing an un-
known environment with a UAV based on Bayesian optimization measurements. The
UAV is provided with a mechanism that integrates prior beliefs it may have regarding
anomaly locations while allowing it to make corrections and refine its beliefs on the
fly as more information is gathered. The energy constraint is not taken into account
in this method. In [7], an information-based controller guides a mobile robot through
an a priori unknown environment in an autonomous exploration problem. Based on
its estimation of which location will provide the most useful information, the robot
determines where to measure next in its current field of view using MI. However, this
method does not take budgets into account when selecting candidates.

2.4 Multi-Robot Informative Path Planning

An important variation of informative path problems and environmental map
learning is multi robot IPP, which has wide applicability in many real-life situations.

As we discussed in Section 2.1, robots are expected to play a vital role in the
implementation of farm monitoring systems in support of precision agriculture. Key
to precision agriculture is the ability to perform scalable data collection on demand.
In this context, the capability of deploying a coordinated team of robots to collect

CHAPTER 2. RELATED WORK 15

data is instrumental, as a team of robots can collect more data per time unit, and
also offers increased robustness to individual failures [103]. For this approach to be
efficient, it is necessary for robots to coordinate their efforts to avoid unnecessary
duplicate work or negative interferences. As part of the measurement collection task,
sample locations can be provided in advance chosen by experts, or randomly, or
selected along the way in response to collected data.

2.4.1 Multi-Robot IPP and Learning Based Methods

For multi-robot informative path planning, Monte Carlo tree search (MCTS) has
recently gained a lot of attention. In [35, 9], the authors proposed a method that
combines Gaussian Processes (GPs) and MCTS to monitor the environment, while
in [73], the authors study the 2D area exploration with modifying MCTS. The goal
is to minimize the time required to cover the areas of interest by first creating a tree
of possible actions for the robots to take, and then choosing the one that maximizes
exploration gain. To adapt to changes in the environment as it is explored, the
underlying tree structure is continuously adjusted by changing the feasible actions for
each node. The authors of [73] also explored the decentralized multi-robot scenario.
Each robot shares its plan with another and each robot stores the shared information
in a buffer. At the next round of MCTS computation, the robot will choose one of
each robot’s shared information from the buffer and it will update the map (reward
function) based on that.

In [85], the goal is to plan the paths to identify the hotspots in unknown 2D
environments with single as well as multiple mobile robots. The spatial field of the
environment is modeled using Gaussian Processes whose covariance function has un-
known hyperparameters. Their adaptive GP-MCTS monotonically changes the hy-
perparameters of the GP model to capture more complex function candidates. In the
multi-robot version, they divide the environment using Voronoi partitioning whose
center has been computed based on the GP model. Our method differs from these
because we do not aim to only identify hotspots, but we rather aim at estimating an
unknown scalar field over its entire domain. The term hotspots refers to regions in
the 2D space where the predicted mean of the GP is particularly high. This, in turn,
leads to the definition of a different reward function guiding the selection of sampling
locations.

In [52, 53], a decentralized approach is proposed using a policy gradient method for
multirobot environmental monitoring and sampling. To encourage robots to spread
away from each other, they are rewarded based on their distance from each other. Fur-
thermore, the method considers a communication range between robots to exchange
locations and the history of previous locations with co-working robots. In [60], a
distributed adaptive sampling method for multi-agent scenarios was proposed which
is robust to the failure of robots and communication. To estimate the optimal policy,
deep neural networks and policy gradient methods are used. These works, how-
ever, do not explicitly incorporate limits on the distance traveled by robots. In [13],

CHAPTER 2. RELATED WORK 16

they considered the problem of reconstructing a spatial field using multiple robots,
Gaussian Processes, and MCTS. As part of this work, robots communicate with one
another and send their current location and observations to other robots and explore
the spatial properties of GPs to attempt to spread the robots in the environment.

In [24], researchers proposed a decentralized Markov Decision Process (Dec-MDP)
for robots to visit a subset of locations to maximize information collection. In order to
solve this problem, they used GP and the value iteration algorithm. Initially, robots
have the same GP learned from the initial training set, then they update it with new
measurements. Rather than forcing robots to stay in continuous communication, their
strategy relies on robots’ opportunistic communication patterns. Choosing actions is
not influenced by budget constraints; instead, more sample points are added until the
budget runs out.

In many practical cases, the state space and the action space are enormous. In
that case, finding the optimal policy is not possible, so the goal instead would be to
find a proper approximate solution using limited computational resources [86]. In [60],
they used deep neural networks and policy gradient methods in order to estimate the
optimal policy, however, they did not explicitly incorporate budgetary considerations.
We would use deep neural networks to find the best policy considering the budget
limit.

2.4.2 Multi-Robot IPP and Other Methods

Having discussed learning-based methods to solve the multi-robot IPP in Sec-
tion 2.4.1, this section explores other methods. In [43], the authors propose a dy-
namic Voronoi approach, where robots repeatedly compute Voronoi partitions and
each robot performs sampling within its partition. Although this method shares the
exploration task efficiently between robots, the iterative recomputation of Voronoi
regions may lead to many unnecessary motions that are problematic in our appli-
cation where robots are subject to a limited travel budget. In [23], a method was
described for mapping unknown environments collaboratively and efficiently by multi-
robot systems. Map knowledge is used to guide robots to allocated regions. Based on
the information collected, robots can modify their exploration strategies in real-time.
In order to maximize coverage and accuracy of the generated map, it is important
to decide when and where to move next. To reduce redundancy and improve overall
exploration efficiency, they share information and coordinate actions. It is likely that
region-based sampling strategies will require significant computational resources since
these regions must be recomputed at every stage. In [54], a distributed approach for
multi-robot sampling based on Voronoi partitioning and GP was proposed. The goal
of the paper is choosing the next sampling point in a way to reduce overall uncertainty
about the knowledge of a given field. To distribute the objective among the robots,
Voronoi partitioning is used. In [79], the authors proposed a method based on MI
criteria and GP. In the proposed method, the sensing domain is decomposed into cells
representing clusters of sensing locations, and the recursive greedy algorithm is run on

CHAPTER 2. RELATED WORK 17

these cells instead of the actual sensing locations. The reason for cell decomposition
is the locality property of the mutual information criterion. Based on this property,
two sets of sensing locations which are sufficiently far apart are roughly independent.
Therefore, to obtain a large amount of information, a robot will need to visit a num-
ber of locations that are far apart. In [38], the authors used hexagonal decomposition
to partition the environment into manageable regions and then developed strategies
to explore the field efficiently by moving robots throughout the regions considering
energy constraints. There are specific movement constraints on the Dubins vehicles,
and the paper discusses how this affects the exploration efficiency and effectiveness.
[39] extends previous work in environments with cluttered obstacles. In [95], AUV
and UGV collaborate to gather comprehensive data for precision agriculture tasks.
Initially, the environment is modeled with a set of possibly overlapping disks. The
objective is to choose a sampling location in each disk, and to plan a tour based on
Orienteering to visit the sampling locations in order to minimize the sum of the travel
time and measurement time. In the algorithm, the UAV can land on the UGV and
be transported between points without consuming energy. This method is not online,
meaning the map is not updated after each measurement.

In [40], task planning under uncertainty was discussed for precision agriculture
using multiple robots. As part of the three phases approach, feasible vertices are
first sampled subject to resource budgets (for example, irrigation water limits), then
feasible vertices are then sampled subject to energy budgets (for example, time), then
a row is selected and the corresponding paths are planned.

In [94], they studied multirobot routing in a vineyard using a formulation based
on the team orienteering problem. In the orienteering problem (OP) an agent is
required to traverse a graph in which each vertex has a predetermined reward and
each edge has a fixed cost. A path should be computed to maximize the sum of
collected rewards while ensuring that the sum of the costs of traversed edges does
not exceed a preassigned budget. Team Orienteering Problem (TOP) is a version of
OP in which a team of robots works together to collect rewards. Various variations
of this problem have been extensively discussed in [89, 90, 91]. The main limitation
of this line of research is that it assumes that rewards are predetermined in advance.
However, in many situations this is not realistic, as data collected on the fly may lead
to revised estimates about the value of reaching a certain location.

In [46], the authors discussed the centralized and decentralized multi-robot Gaus-
sian Process (GP) training and prediction in multi-agent system. This paper in-
troduces different methods for GP prediction on graph-based topologies, including
covariance-based nearest neighbors that select agents for GP prediction on locations
of interest. Their decentralized method is based on the fact that GPs behave poorly
with increasing observation numbers (O(n2)). They plan to provide the more com-
putationally efficient algorithm with a multirobot system.

Chapter 3

Single-Robot IPP, Q-Learning
Solution

In this chapter, the concept of IPP with a single robot is explored with applica-
tions in environmental map learning, and a solution based on Q-Learning method is
developed and discussed. The work shown here was originally presented in [74].

3.1 Informative Path Planning

As discussed in Section 2.1, ground robots can be used as part of a farm monitoring
and sampling system . These samples must be collected over vast spatial domains and
the use of robots allows better handling of dwindling agricultural workforce. In these
applications it is often necessary to frequently collect data to monitor parameters
such as water, nitrates, nutrients, or to determine soil quality, or crop estimates.

A key problem in this area is how to handle the tradeoff originating by the necessity
to collect numerous samples while being constrained by how far a robot can travel
before its battery is depleted and needs recharging. In this context, planning a path
to ideally collect the best samples while not running out of fuel is of fundamental
importance.

This family of problems is known as informative path planning (IPP). Informally
speaking, the goal of IPP is to define a path through a set of sampling locations
allowing for the best estimate of the parameter being measured. Depending on the
application, sampling locations may be preassigned (and then the robot has to select
a subset of them), or may be determined on the fly. Owing to the intrinsic computa-
tional complexity of the problem, one has to settle for collecting a sub-optimal subset
of samples. A distribution of spatial data can be modeled by a Gaussian Process
(GP), and this approach is often used in agriculture [84, 81]. Combined with this
model, metrics such as mutual information (MI), entropy, or variance can be used to
guide the process of collecting samples to estimate a GP of the field. While the IPP
problem has been extensively studied in the past, we consider a harder version where
we also manage an assigned energy budget that is influenced by stochastic travel costs.
This makes this problem different and harder than the orienteering problem that has
been recently studied in a similar, yet simpler setting emerging in precision agricul-
ture [92, 89, 90, 91]. We consider the stochastic environment because agricultural

18

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 19

fields may change from time and this may affect the cost of travel.
Let us now define the IPP in mathematical terms. Let U ⊂ ℜ2 be the environment

of interest. We hypothesize the presence of random distribution characterized by a
time-invariant, Markovian transition kernel that depends on the position, but not
on the underlying field being sampled. The current location of the robot is defined
by ss = (sx, sy). We assume the robot starts from a pre-assigned start location
sinit (e.g., the point where the robot is deployed), and must terminate its mission
at location sf , where it will either be retrieved or recharged. The robot is provided
with n different sample locations of interest denoted by the set V = {s1, s2, . . . , sn}.
The robot is subject to a travel budget B limiting the set of sample locations it can
visit. This constraint models, for example, the limited energy provided by the battery
onboard the robot. We denote with xg the scalar reading collected by the robot when
sampling location sg ∈ V , and will denote with χg the random variable modeling xg.
The goal is to visit a subset of locations of V such that the overall travel budget is
not exceeded and the accuracy of field reconstructed using the collected samples is
maximized. More formally, assuming ρ is a path starting at sinit visiting a subset of
locations of V and ending in sf , let f(ρ) be a generic function measuring the quality
of the reconstructed field and C(ρ) be the cost associated with traversing ρ. The
informative path planning problem (IPP) can then be expressed as the problem of
solving the following constrained optimization problem

ρ∗ = argmax
ρ∈ψ

f(ρ)

s.t. C(ρ) ≤ B
(3.1)

where ψ is the set of all paths from sinit (start point) to sf (final point). It is
immediate to note that the orienteering problem is a special instance of IPP, and
therefore IPP is NP-hard [84].

3.2 Q-learning based Solution

A Q-Learning-based algorithm is described in this section.

3.2.1 Markov Decision Process

Markov Decision Process (MDP) is a standard modeling tool for tackling planning
problems when the state is fully observable, the environment is stochastic, and rewards
are additive. A finite MDP is defined by set of states s ∈ S, set of actions a ∈ A, a
transition function p(s′|s, a) and a reward function R(s, a, s′). The transition function,
describes the probability of moving to a new state s′ given the current state s and
action a. The reward function, specifies the immediate reward received after taking
action a in state s and transiting to state s′.

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 20

The goal is to find the optimal policy π∗ : S → A to maximize the expected return.
We consider finite MDPs with finite number of states and actions. Different reward
functions have been proposed in literature. In our work we deal with an episodic
task, i.e., the task always ends after a finite number of steps, either because the robot
reaches the final location, or because it runs out of fuel. In this case it is typical to
define the expected return, Gt, as a function of reward sequence

Gt = rt + λrt+1 + ...+ λT−trT ; 0 ≤ λ ≤ 1 (3.2)

where λ is discount factor and shows the rewards in next steps have less effect on
the problem and T is the time of the last action. The objective is then to produce
realizations that in expectation maximize Gt. When the model of the environment
is known, classic methods such as the Bellman equation and dynamic programming
can be used to find the optimal policy. It is worth noting that this problem is
unconstrained, i.e., the objective is to maximize Gt only, while in our problem, we
are also assigned a constraint on the traveled budget. In constrained MDP (CMDP),
the optimal policy must satisfy a set of constraint which is represented by penalty
function [6].

If the problem is episodic, Monte Carlo (MC) methods can be used. An MC
method only needs experience (sample sequence of starts, actions and rewards) from
actual or simulated environment. Then, it solves the problem based on averaging
sample returns. MC methods use the value function to find the policy where this is
the expected return when the start state is s following policy π.

If the problem can not be defined in episodic way and it needs update at every time
step, the Temporal Difference (TD) methods can be used; A Sarsa and Q-learning
are on-policy and off-policy method of model free RL. A system that considers n-step
rewards instead of one-step rewards is called n-step bootstrapping, (n-step Sarsa and
Q-learning) [86].

3.2.2 Q-Learning

In model-free reinforcement learning, complete knowledge of the environment is
not assumed. In our case, while we assume that the transition probabilities are known,
the rewards are instead not known upfront (their specific formulation is described later
in Section 3.2.3). In such scenarios, methods such as Q-learning, SARSA, and others
can be used to determine the policy [86]. Q-learning is often used because of its off-
policy nature, i.e., the ability to estimate the value of taking a certain action a from
state s while the system is following a preassigned policy that may be different from
the optimal one. In on-policy learning (SARSA), the Q(s, a) function is learned from
actions the agent took using its current policy π(a|s) [86]. In Q-learning, for each state
s we estimate Q(s, a), i.e., the expected return of executing action a while in state s
at time-step t and following the policy associated afterwards. Key to Q-learning is
the following update equation

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 21

Q(st, at)← Q(st, at) + α[Rt+1 + λ argmax
a

Q(st+1, a)−Q(st, at)] (3.3)

where α is the learning parameter and st and at are the state and action at time
t. In this case, the learned action value function, directly approximates the optimal
action value function Q∗ independent of the policy being followed [86]. In our work,
we implement a similar update equation to estimate the value of visiting a certain
location.

3.2.3 Reward Function

For this section, we assume that V , the subset of coordinates in the domain where
the robot can collect a sample, is given, e.g., it may be provided by a human with
expertise about the domain of operation. As we mentioned before we associate a
random variable χg to each location sg ∈ V . χg models the sample collected at sg.
Let A ⊂ V be the subset of already visited locations and let χA denote the set of
random variables associated with the elements ofA. InitiallyA = {sinit} (the starting
location), and the role of the planning algorithm is to iteratively add locations to A
so that eventually the underlying spatial field can be accurately estimated, while at
the same time ensuring that the robot does not overrrun its assigned travel budget.
To avoid trivial instances, we assume that with the assigned budget the robot cannot
visit all elements V .

To asses the quality of the information gathered at a given location and drive
the sampling selection process we use mutual information (MI). MI expresses the
expected reduction of entropy of the sample locations in set V \ A, which the robot
has not visited yet, after considering the measurements obtained at visited locations.
This is an instance of the regression problem, where we use the measured data from
the visited sample locations to predict values at yet to be visited sample locations.
MI can be defined as follows by using the concepts of entropy and conditional entropy.
The classical definition of continuous (or differential) entropy of a continuous random
variable χg according to [64] is

H(χg) = −
∫
Pχg log(Pχg) dx

This definition can be naturally extended to the case of a set of variables χA. For a
sample location sg /∈ A and a set A ⊂ V we define the conditional entropy of sg with
respect to A as:

H(χg|χA) = −
∫
P (χg, χA) log(P (χg|χA))dxgdxA

MI is then defined as

MI(χA;χV\A) = H(χV\A)−H(χV\A|χA)

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 22

Therefore, the problem of selecting the best set of sample locations A is equivalent
to solving the following optimization problem

argmax
A⊂V

[H(χV\A)−H(χV\A|χA)]

while ensuring that the robot keeps the consuming energy under the travel budget
as it visits the locations in A. In our work, A is not determined globally, but rather
incrementally, i.e., by adding one sample location at the time we aim to maximally
increase MI. More formally, each candidate sample location sg will give the following
contribution [33]:

MI(χA ∪ χg)−MI(χA) = H(χg|χA)−H(χg|χV\{A∪g}) (3.4)

It is well known that this approach yields suboptimal results, but this is inevitable
in the general case due to the intrinsic computational complexity of the problem. To
formally define how we compute Equation 3.4, we resort to the assumption that the
underlying field can be modeled using a GP. To make predictions at location sg, we
consider the conditional distribution p(χg = xg|χA = xA), where we condition on all
sample locations xA visited by the robot [48].

The multivariate normal distribution over a set χV of random variables associated
with n locations in V is defined as:

P (χV = xV) =
1

(2π)n/2|Σ|
e−

1
2
(xV−µ)TΣ−1(xV−µ) (3.5)

where every location in V corresponds to one particular sampling location. The
multivariate normal distribution is fully specified by providing a mean vector µ and
a covariance matrix Σ. If we know the values collected at A ⊂ V , we find that for
the sample location sg ∈ V \ A the conditional distribution p(χg = xg|χA = xA) is a
normal distribution, where mean µg|A and variance σ2

g|A are given by [64]:

µg|A = µg + ΣgAΣ
−1
AA(xA − µA),

σ2
g|A = σ2

g − ΣgAΣ
−1
AAΣAg

(3.6)

where ΣgA = ΣT
Ag is a row vector of the variances χg with all variables in χA, similarly

for ΣAA. µg and σ
2
g are the mean and variance of χg. A general formula and detailed

explanation can be found in Section 2.2.
For any finite subset A = {s1, s2, ..., sm}, A ⊂ V of location variables, the covari-

ance matrix ΣAA of the variables χA is obtained by

ΣAA =

K(s1, s1) K(s1, s2) · · · K(s1, sm)
...

...
...

K(sm, s1) K(sm, s2) ... K(sm, sm)

 (3.7)

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 23

where K is the Mattern kernel, which is the generalization of RBF Kernel and is
parameterized by length scale l ≥ 0, smoothness scale ν and Euclidean distance
d(., .) which assumes it only depends on the distance between two random variables
(isotropy) and is independent of their locations (stationary). Once all the mean
and covariance functions has been estimated, we can evaluate the MI criterion in
Equation 3.4. Using Equation 3.6 and the fact that the differential entropy of a
Gaussian random variable χg conditioned on some set of variables A is a monotonic
function of its variance

H(χg|χA) =
1

2
log(2πeσ2

g|A)

=
1

2
log(σ2

g|A) +
1

2
(log(2π) + 1)

(3.8)

we can define the value information of each candidate sample location as

rg =
σ2
g|A

σ2
g|Ā

=
σ2
g − ΣgAΣ

−1
AAΣAg

σ2
g − ΣgĀΣ

−1
ĀĀΣĀg

(3.9)

where Ā = V \ {A∪{g}}. We have to make sure σ2
g −ΣgĀΣ

−1
ĀĀΣĀg is always nonzero

to guarantee the rg is the finite number.
Proof of Equation 3.9 The reward function is calculated as below.

MI(χA ∪ χg)−MI(χA) = H(χg|χA)−H(χg|χV\{χA∪χg})

=
1

2
log(σ2

g|A) +
1

2
(log(2π) + 1)− (

1

2
log(σ2

g|Ā) +
1

2
(log(2π) + 1))

=
1

2
log

σ2
g|A

σ2
g|Ā

(3.10)

In order to simplify the calculation, we remove the constant value 1/2 and log in
Equation 3.9.

3.2.4 Proposed Algorithm

Starting from the framework established in the previous subsection, to select the
subset of sample locations A while considering the travel budget, we propose a two
stages algorithm. This problem is related to orienteering problem, but it is however
different because in the orienteering problem one must know the value of each vertex
before, while in this scenario this is not the case. This aspect will be further discussed
in the experimental section.

The outer planning algorithm determines the next location to add to the path,
while the inner algorithm plans a collision-free path to the designated location and
estimates the travel cost while accounting for the stochastic nature of the environment.
Algorithm 3.1 shows the outer planning loop and works as follows.

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 24

Algorithm 3.1 Q-Learning based Planner for robot R with limited budget B

1: Input: V , sinit, sf , B, N , obstacles-list, r, γ, ε, α
2: Output: RT , ET , A
3: Initialize matrix U with zeros
4: for N iterations do
5: RT ← 0
6: ET ← 0
7: A ← {sinit}
8: ss ← sinit
9: for each episode do

10: sg ←

{
random element in V \ A within r with prob ε

element as per Eq. 3.11 with prob 1− ε
11: eT ← RRT(env, s, sg, obstacles-list)
12: ET ← ET + eT
13: if ET > B then
14: RT ← RT −∆
15: else if ET ≤ B & sg = sf then
16: RT ← RT − (B − ET)/K
17: else
18: RT ← RT + rg (see Eq. 3.9) /dist (ss, sg)
19: end if
20: update U based on Eq. 3.12
21: A ← A∪ {sg}
22: ss ← sg
23: end for
24: end for
25: return A and navigation path to travel along sample points in A.

The algorithm takes as input the set of candidate sampling locations V , the start
and final locations sinit and sf , the budget B, a number of iterations N , the locations
of obstacles, and parameter r (radius), ε, γ, and α.

The idea behind the algorithm is to develop a plan using an approach inspired by
Q-learning, whereby for each state s we estimate Q(s, a), i.e., the expected return of
executing action a while in state s. In our problem, s is a robot location, i.e., one
of the elements of A, and action a represents a possible next sampling location in
V\A, i.e., a is an unvisited location. The reward associated with a potential sampling
location (i.e., an action) is given by rg defined in Equation (3.9). These values are
stored in an n×n matrix U such that U [i, j] represents the estimated value of moving
from si to sj and collecting a sample at sj. Assuming the robot is currently positioned
at location ss, it will pick the next location randomly among the locations in V \ A
within a radius r with probability ε, and with probability 1 − ε it will pick location

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 25

sg with g defined as
g = arg max

j∈V\A
U [s, j]. (3.11)

Constraining the choice of the next location to be within radius r ensures that the
robot does not switch too frequently between far away locations, thus helping to
make a more efficient use of the available budget. The parameter ε instead balances
exploration and exploitation and is decreased during the execution of the algorithm
to favor exploration in the beginning and then exploitation. After a location sg is
selected, in line 11 the second step of the algorithm (inner algorithm) is executed.
Based on the current location ss and the selected next location sg, the RRT algorithm
[50] computes an obstacle free path and estimates the energy consumed (eT). In our
implementation we use RRT, but other motion planners could be used as well. To
estimate the consumed energy et, the algorithms uses the motion model for the robot
to simulate multiple times the execution of the returned path and obtain an estimate
for eT . The concatenation of the routes returned by the successive calls of the inner
planning loop are eventually returned by the overall planner to define how to navigate
through the sequence of selected locations A.

In the next step, the matrix U is updated as follows. The dimension of the U
function depends on the number of sampling points. First, for location sg, we will
find the best next goal based on Equation 3.11 and then U is updated as follows:

U [i, g] = (1− α)U [i, g] + α(RT + γ argmax
j∈V\A

U [g, j]) (3.12)

where i is the index fo the current location and g varies over the set of all unvisited
locations. The idea behind this update is to consider not only the immediate reward,
but also a one-step lookahead. In Equation (3.12) the current return value RT is used.
As seen in the pseudocode, RT accumulates the rewards, but incurs a penalty when
the consumed energy ET exceeds the budget. The algorithm also penalizes runs where
the robot ends with too much unused budget (line 18). One could of course use a
deeper lookahead, but this would come at an increased computational cost. Studying
the impact of the lookahead horizon is part of our future work. In each iteration, the
algorithm assumes the robot starts from beginning location sinit and in each episode,
it will add one sample location sg. Each iteration consists of number of episodes and
will end if the consumed energy goes beyond the Budget or the robot visits the final
location sf with in a budget. Through repeated iterations, the contents of the matrix
U are updated and model the value of visiting a certain location while averaging all
past executions, aligned with the spirit of Q-learning.

3.3 Results and Discussion

To investigate the effectiveness of the proposed method, we simulate it in different
scenarios with various underlying distributions of the field being measured, number
of sample locations and obstacles.

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 26

3.3.1 Methods

In this section, comparisons are made with three alternatives; heuristic greedy-
random point selection (MGRRRT); a Q-learning method (MLQL); and an orienteering
method (MOr).

Heuristic Greedy-Random

The heuristic greedy-random strategy selects at each stage either a random un-
visited location or the closest unvisited location. More precisely, with probability
0 ≤ β ≤ 1 it selects a location in V \A using a uniform distribution (random option),
and with probability 1− β it selects the location in V \ A that is closest to the cur-
rent robot location (greedy option). To account for the budget constraint, in both
instances the next sample is rejected if there is not enough budget left to reach it and
then move to the final location sf . When a location is discarded, the selection method
is iterated until either a valid location is found or no more candidate locations are
left. In this last case, the algorithm selects sf and tries to reach the final location.
After the sample selection process, the RRT method finds an obstacle free path to
the next location.

Q-Learning

The Q-learning method chooses the next location based on Algorithm 3.1, and
afterwards runs an offline Q-learning method to find the best obstacle free path to
reach the location of choice. Note that our proposed method uses the RRT algorithm
rather than Q-Learning.

Orienteering method

The orienteering method (Or) determines the path that visits the greatest number
of points in V without exceeding the preassigned budget. It involves maximizing a
reward function while keeping a constraint on the cost of traveling between the places
visited by the route. Note that in this case it is necessary to assign a value to each
element of V in advance, consistently with the fact that in orienteering one must
know the rewards of the vertices beforehand. Each vertex has a reward associated
with it, and each edge between two vertices has a cost as well. Vertices can be visited
more than once if necessary, but rewards can only be collected once. The starting
and ending vertices are fixed. In many cases, the start and end vertices coincide such
that the resulting path begins and ends in the same place.

3.3.2 Metrics

In order to compare the quality of the solutions produced by the different methods,
we use two criteria.

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 27

MSE

We use the MSE error between the predicted model and the underlying model
(ground truth, unknown to each of the algorithms). To predict the model using the
values collected at the sample locations we use the scikit-learn Python library and
its GP regression library with Mattern Kernel with length scale of 1 and smoothness
parameter of 1.5. The choice of the kernel and of the parameters was made after hav-
ing experimentally evaluated different alternatives. The same kernel and parameters
were used for all algorithms.

Failure Rate

The second criterion to evaluate the effectiveness of the algorithm is the ability
to remain within the assigned budget B. Indeed, from a practical perspective it is
important for the robot to reach the final docking station before running out of energy.

3.3.3 Results

In the first scenario, we consider a 2D stochastic environment with obstacles spread
uniformly on a lattice pattern. This choice is informed by our practical problem, i.e.,
collecting samples in an orchard with equally spaced fruit trees. In all cases, the start
location sinit is on the bottom left (0,0) and the final location sf is on the top right,
(50,50). Four different budgets were used, namely 500, 750, 1000 and 2000. For this
scenario, the set V consists of 100 locations, half of which are randomly dispersed in
the environment, while the other half are chosen by hand in proximity of the peaks
of the underlying ground truth distribution (see Figure 3.2 (a)-(b)). The random
locations are used to test robustness to inaccurate information, while the locations
placed by hand are consistent with our initial assumption that a human with domain
expertise would select interesting places to sample. With reference to Algorithm 3.1,
we set ∆ to 1, K to 100, γ to 0.9, α to 0.5, r to 10 and ε starts from 0.9 and decreases
to 0.2. Also for MLQL and MGRRRT , we set α to 0.5, λ to 0.9 and β to 0.5.

Table 3.1 summarizes the results of the three algorithms for the different budgets.
For this first scenario, we do not consider the orienteering method. For each test
case we present the average results produced by each of the algorithms (MLRRT is the
algorithm discussed in this paper, MGRRRT is the heuristic greedy-random algorithm
and MLQL is the learning sampling selection method following by Q-learning). The
values displayed for NA, ET , RT and MSE are limited to the cases where the robot
does not exceed the assigned budget B. Nf shows how often the algorithms violate
the budget constraint B (out of 25 runs). The trial counts as a failure when the
robot runs out of the energy while it has not visited the final location sg. NA is
the number of locations visited by each algorithm, ET is the consumed energy, RT

is total reward and MSE is the mean square error. The last column provides the
running time of each algorithms. The results illustrate that our proposed algorithm
MLRRT is generally faster and achieves better MSE comparing to MGRRRT despite

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 28

(a) (b)

Figure 3.1: (a) The underlying distribution with all sample locations and (b) predicted
distribution with all locations.

(a) (b)

Figure 3.2: (a)-(b) Selected sample locations and reconstructed underlying distribu-
tion with MGRRRT (B = 750).

visiting a smaller number of locations in average. Importantly, MLRRT consistently
manages the assigned budget, while the other two algorithms have a higher failure
rate. Overall, the reward column indicates the MLRRT method visits the locations
providing better information (in term of GP regression) which is another crucial
factor in IPP problem. In cases with tight budgets (B = 500), this issue becomes
increasingly important where the MLRRT method would be able to reach better MSE
and reward with fewer failures.

Figures 3.1 (a)-(b) show the underlying model of the spatial data in the environ-
ment with all sample locations and the predicted model computed with all locations.
Figures 3.2 (a)-(b) show the selected points with the heuristic greedy-random method.
Despite the robot visiting more locations, the reconstructed scalar field is less accu-
rate. Furthermore, it runs out of energy more frequently. Figures 3.3 (a)-(b) show
the selected and visited locations with our proposed method with budget 750. It
can be seen that the proposed approach selects the points widely to cover the whole
area and predicts the model more accurately by visiting a sufficient number of sample

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 29

(a) (b)

Figure 3.3: (a)-(b) Selected sample locations and reconstructed underlying distribu-
tion with MLRRT (B = 750).

(a) (b)

Figure 3.4: (a)-(b) Selected sample locations and reconstructed underlying distribu-
tion with MLRRT and (B = 2000).

locations while maintaining the budget. Figures 3.4 (a)-(b) show the predicted model
with the visited locations in MLRRT method with budget 2000. It is clear from the
picture that the predicted models resemble the underlying model especially it has the
ability of predicting each peaks of Gaussian distribution despite the fact that it will
only visit half of the sample locations.

The path generated by the MLRRT algorithm with a budget 750 is shown in Fig-
ure 3.5, while Figure 3.6 shows the path generated by MGRRRT under the same con-
ditions. The figures show that the path produced in the first case more effectively
balances between covering the entire space and focusing on the peaks of the under-
lying distribution. Moreover, the path is more regular with less switches between
different sides of the environment.

As a second scenario, we consider the same environment, but this time without
obstacles and with a different underlying distribution (see Figure 3.7).

In this case our method is compared with the orienteering method. MLRRT repre-
sents the proposed method, MOr is the orienteering method with setting all rewards

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 30

Budget methods NA ET RT MSE Nf time

500
MLRRT 14.4 437.93 1.53 0.001734 1 0:17.23

MLQL 15.2 456.12 0.54 0.001803 1 7:62.13

MGRRRT 17.4 468.95 0.44 0.001748 3 0:28.74

750
MLRRT 16.4 645.14 2.74 0.001494 0 0:23.38

MLQL 22.25 690.22 2.28 0.001671 1 10:45.12

MGRRRT 22.6 686.35 1.14 0.001621 3 0:35.42

1000
MLRRT 25 801.13 2.69 0.001144 1 0:35.55

MLQL 30.7 847.24 2.47 0.001372 0 14:25.18

MGRRRT 34.5 780.90 1.40 0.001468 2 0:45.87

2000
MLRRT 45.9 1764.85 3.14 0.0007221 0 01:34.69

MLQL 55.3 1842.84 3.63 0.0005320 0 22:38.10

MGRRRT 53.2 1743.23 2.17 0.0007980 0 01:40.74

Table 3.1: Summary of results for 25 runs with different budgets. The iteration
number is set to 20.

Figure 3.5: Path followed by the robot running the MLRRT algorithm with budget of
750.

for all locations to 1 andMOrwP represents the Orienteering method with rewards set
equal to the expectation of the GP prior at the point. The orienteering problem is
solved using a general purpose heuristic known as S-algorithm [96] (the exact solution
based on mixed integer linear programming is too time consuming when considering

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 31

Figure 3.6: Path followed by the robot running the MGRRRT algorithm with budget
of 750.

our problem instances). While the orienteering method manages to visit a greater
number of locations in V it suffers from two major setbacks. The first is that its
number of failures is much higher. This is explained by the fact that orienteering
assumes deterministic travel costs, while in our scenario these are stochastic. The
second is that the subset of selected points still renders a less accurate reconstruc-
tion, as attested by the MSE column. Note that in this case our algorithm is slower
because we have increased the number of iterations to 200.

Figures 3.7 (a) and (b) show all the sample locations in the environment and
predicted model using them. Figures 3.8 (a) and (b) show the sample locations se-
lected by learning based selection method MLRRT and the reconstructed underlying
model with budget 200. MLRRT can more precisely reconstruct the underlying field
even with half the locations visited compared to both orienteering methods. Fig-
ures 3.9 (a) and (b) show the sample locations selected by the MOr method and the
reconstructed underlying model. Since the robot does not reach the second peak, the
reconstructed field is incomplete. Figures 3.10 (a) and (b) show the sample locations
selected by MOrwP method. In this case, the robot attempts to visit both peaks, but
is unsuccessful in rebuilding the underlying field correctly which in result leads to
higher MSE.

3.4 Conclusions

In this chapter, we study the IPP using a single robot, where path planning was
required on a set of sampling locations within a limited budget in a stochastic dy-
namic environment with stationary obstacles. The objective is to provide the best

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 32

(a) (b)

Figure 3.7: (a) The underlying distribution with all sample locations and (b) predicted
distribution with all locations.

(a) (b)

Figure 3.8: (a) The selected sample locations and (b) reconstructed underlying dis-
tribution with MLRRT (B = 200).

estimation of an unknown scalar field while subject to a travel budget. Agricultural
robots in constrained environments are likely to encounter this problem when col-
lecting samples. The algorithm determines the next sample location based on the
consumed energy, budget and mutual information criteria, and then a second loop
finds the best obstacle free path using the RRT algorithm to visit the designated sam-
ple location. The Or method and heuristic greedy-random algorithm are compared
with Q-Learning-based methods. The simulation result showed the effectiveness of
the proposed method. According to MSE criteria, our proposed learning method
predicts the underlying field better than heuristic greedy-random and orienteering
methods in complex environments.

CHAPTER 3. SINGLE-ROBOT IPP, Q-LEARNING SOLUTION 33

(a) (b)

Figure 3.9: (a) The selected sample locations and (b) reconstructed underlying dis-
tribution with MOr (B = 200).

(a) (b)

Figure 3.10: (a) The selected sample locations and (b) reconstructed underlying dis-
tribution with MOrwP (B = 200).

Budget methods Nf NA ET MSE time

100
MLRRT 3 7.5 89.22 0.00121 3:20.78

MOr 12 23 99.54 0.00137 0:11.09

MOrwP 9 17.8 98.80 0.00128 0:10.33

200
MLRRT 2 13.2 187.84 0.00072 5:14.08

MOr 8 38 199.03 0.00126 0:32.39

MOrwP 10 32.8 198.47 0.00111 0:29.12

Table 3.2: Summary of results for 25 runs with B = 100 and B = 200. The iteration
number for MLRRT is set to 200.

Chapter 4

Single-Robot IPP, MCTS Solution

In this chapter, we address the problem of informative path planning with a single
robot with applications to environmental monitoring. We present one solution based
on MCTS and resampling (RMCTS) and anther based on MCTS and heuristicm
method (All-MCTS). The heuristic and Or methods introduced in Section 3.3.1 are
used as a benchmark for comparing performance against the other methods. As we
discussed the IPP problem in Section. 3.1, we begin this chapter by reviewing the
MCTS basics. The work shown here was originally presented in [76].

4.1 MCTS based Algorithms

We start proposing two methods for single robot information acquisition that in
the next chapter will be extended for the multi-robot case. In both methods the 2D
area of interest U is discretized by partitioning it into a uniform grid where robot
occupies one grid cell. In this section, we introduce two methods, i.e., the all grid
MCTS algorithm (All-MCTS) and the sampling-based MCTS (RMCTS).

4.1.1 Monte Carlo tree search (MCTS)

MCTS is an online method for solving sequential, stochastic decision making prob-
lems. MCTS builds a tree with a root node representing the current state and edges
connecting states that can be reached by executing a single action. Nodes subse-
quently added to the tree represent states that can be reached through a sequence of
actions originating at the root. Each action is assigned a Q-value representing how
good the action is, which is an estimate of the value that will be obtained through
a complete execution starting with that action. Once the tree has been constructed,
an action is selected from those available at the root. Upon execution of the selected
action, the tree is discarded and rebuilt with the next state as its root. A basic version
of MCTS consists of the following four steps [86, 17] as illustrated in Figure 4.1.

• Selection: Using the so-called tree policy, a path from the root to a leaf node
is selected.

• Expansion: From the selected leaf node, one or more child nodes are added to
the tree.

34

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 35

• Rollout: A complete episode is simulated from the selected leaf node, or from
one of its newly added child nodes (if any). During this simulation, a simple,
suboptimal policy is used to decide the actions.

• Backup: Based on the return generated by the simulated episode, the action
values attached to the tree edges traversed by the tree policy are updated, or
initialized.

Figure 4.1: Phases of the Monte Carlo tree search algorithm [86].

A critical component is the tree policy for action selection (“selection” step in
the list above). One popular criterion for action selection is the Upper Confidence
Bounds, UCT rule defined in Equation (4.1) and first introduced in [45]. Each
candidate action a is assigned a UCT (a) value defined by,

UCT (a) = Qt(a) + c

√
ln t

Nt(a)
(4.1)

and eventually the action with the highest UCT value is selected for execution. In
Equation (4.1), Qt(a) denotes the action value estimate, Nt(a) is the number of times
that action a has been selected prior to time t, and c is a constant controlling the
exploration. Initially, Nt(a) is zero for all actions and UCT (a) is assumed to be ∞
when Nt(a) = 0, thus forcing exploration. Every time a is selected, t and Nt(a)
increase, and every time a is not selected, t increases but not Nt(a), ensuring that all
actions will eventually be selected, but actions with lower value estimates or those that
have already been selected frequently will be selected less frequently. This criterion
balances exploration and exploitation, with the balance determined by the constant
parameter c.

4.1.2 All Grid MCTS Algorithm (All-MCTS)

The All-MCTS method defined in Algorithm 4.2 has been built upon the AdaptGP-
MCTS discussed in [85]. The main difference is that the method presented in [85]
operates on a continuous domain and correspondingly assumes that robots can move
to any point by executing a set of preassigned motion primitives tailored to the robot
motion model. In addition, [85] does not consider a finite travel budget. The method

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 36

presented in this section, instead, operates on a grid and aims at reaching the preas-
signed goal location before the robot runs out of energy.

Each robot’s next sampling location is selected using the MCTS algorithm where
the current location of the robot ss is considered as the root node of the MCTS tree.
MCTS expands the tree by adding some, or all, of the node’s children to the tree.
A children set contains the locations that can be reached from each sample location.
Each grid cell (and therefore each robot position) has an associated children set Ψ[ss]
including all locations that can be reached through the execution of a single motion
action (north, south, east, west, north-east, north-west, south-east, south-west). The
children set Ψ[ss] includes all grid neighbors located one or two hops away from
the current robot location (see Figure 4.2(a).) The highlighted area represents the
children; one step neighbors are shown in blue and two step neighbors are in orange
color. Due to the fact that the children set includes all possible neighbors surrounding
the robot’s current location, we call this algorithm All-MCTS.

(a) (b)

Figure 4.2: (a) Robot’s children set Ψ[ss] in the All-MCTS method. One step neigh-
bors are shown in blue and two step neighbors are in orange color. (b) Candidate
locations in the RMCTS method consisting of a set of locations V scattered in the
environment.

In addition to one-step and two-step neighbours, the final location sf is always
added to the children set. The addition of the final location ensures that from any
location robot R can always consider moving to the final goal location. This is
useful when the travel budget is about to expire. The reward rg associated with each
neighbor potential sampling location sg considered by robot R is defined as (as per
the original method in [85]):

rg = σ + β1/2µ (4.2)

where σ is the variance of the candidate location, µ is mean, and β is the number of
measurements collected along the way. The second term in equation 4.2 encourages

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 37

the robot to visit locations with high values for the underlying field before exploring
locations with higher variance. The trade-off is mediated by the factor β.

The selection of the next location is performed online, i.e., the reward associated
with each location is not predetermined, but re-estimated iteratively based on the
locations already visited and data previously collected using standard GP regression
algorithms. That is to say that in Equation (4.2), σ and µ are the values estimated
by the GP regression algorithm based on the samples collected thus far.

The MCTS is expanded for a fixed number of iterations, and at each iteration, the
path and leaf are chosen based on UTC formula introduced in Equation (4.1). Once a
leaf is reached, as per the MCTS framework a rollout is executed randomly to estimate
the quality of the leaf, i.e., its Q value. In our implementation we use a simple random
rollout, i.e., the planner continues to select additional random locations from the
unvisited children set until it either reaches the final destination or runs out of energy.
In this phase of running the rollout, the GP distribution is not updated. During the
MCTS expansion and rollout, every time a candidate location is included in the tree,
a generative model is used to estimate how much energy would be consumed. cgs is
an estimate of energy consumed by the robot when it moves from its current location
ss to the designated candidate location sg and is given by the formula defined in
Equation (4.3)

cgs = αd(ss, sg) + k · ε(1, d) (4.3)

where d(ss, sg) is the Euclidean distance between the current location, ss and candi-
date location sg, k is a constant number and ε is a random sample from a uniform
distribution over the interval [1, d]. We use the uniform distribution over the interval
[1, d] because added noise must be directly proportional to distance traveled. There-
fore, when robot travels long distances, it is more likely to consume more energy.

After the tree T has been built, the next location sg is selected based on the UCT
formula defined in Equation (4.1). The robot moves to sg and collects a sample. Then,
the budget of the robot is updated by considering the amount of energy consumed
during the motion and the GP is updated based on the value read at sg. The process
continues until the robot reaches the final destination, which is a success, or it runs
out of energy, which is a failure. Algorithm 4.2 sketches the process.

Algorithm inputs are initial location, sinit, final location, sf , and assigned budget,
B. In the beginning, the visited locations set contains the initial location, and the
current location is also the initial location. In order to avoid revisiting the same
locations, the input of the MCTS planner should be the cand set instead of the
children set itself, Ψ[ss]. The cand set is the children set with the visited locations
removed. This algorithm returns the remaining budget and the set of visited locations.

4.1.3 Sample Location MCTS Algorithm (RMCTS)

The RMCTS method differs from All-MCTS in two ways, i.e., first in how the
children set is defined, and second in how the reward is assigned to candidate locations.
The children set in All-MCTS method described in Section 4.1.2 included all grids

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 38

Algorithm 4.2 Online All-MCTS planner for robot R with limited Budget B

1: Input: sinit, sf , B
2: A ← {sinit}
3: ss ← sinit
4: while B > 0 and ss ̸= sf do
5: cand← Ψ[ss] \ A
6: T , sg ← MCTS(ss, cand)
7: Move to sg, collect reading xg, and compute consumed energy cgs
8: σg, µg ← update GP with new observation xg
9: B ← B − cgs (defined in Eq. (4.3))
10: A ← A∪ {sg}
11: ss ← sg
12: end while
13: return B, A

surrounding the current location for sampling, but children set in this method consists
of n preassigned sample locations of interest scattered in the environment that are
identified a-priori by domain experts based on past experience. In this case, we have
one more input to the Algorithm 4.3, i.e., the set V = {s1, s2, . . . , sn} of candidate
locations. V includes the number of locations and their placement in U in such a way
that no robot has sufficient budget to visit all of them, otherwise the problem becomes
trivial (see Figure 4.2(b)). This setup is similar to what we considered in our former
works described in Section 3.2, and is informed by practices implemented in precision
agriculture (e.g., the definition of sentinel locations to be monitored through the
growing season). For RMCTS, the children set Ψ[sg] contains the locations that can be
reached from ss. Problem instances may have tens or hundreds of possible locations,
so considering them all would result in search trees with extremely high branching
factors, and this would be unmanageable. To minimize planning time, we limit the
locations that are considered from each location in children set, which is returned by
Ψ. If M (an even number) is considered for the branching factor, M/2 elements in Ψ
are the nearest elements in V , whileM/2−1 are chosen randomly from the rest. This
selection balances global exploration and local exploitation. Additionally, the final
location sf is always added to children set Ψ. As in the previous method, the addition
of sf to Ψ ensures that from any location robot R can always consider moving to the
final location. This is useful when the travel budget is about to expire. In RMCTS,
each candidate location is assigned a reward rg as per the following formula which
favors locations with high uncertainty (σg) and small distance:

rg =
σ2
g

d(ss, sg) + k · ε(1, d)
(4.4)

where d(ss, sg) is the Euclidean distance between the current location, ss and candi-
date location sg, k is a constant number and ε is a random sample from a uniform

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 39

distribution over the interval [1, d]. The estimate of the cost in this method is given
by the formula defined in Equation 4.3.

Algorithm 4.3 Online RMCTS planner for robot R with limited Budget B

1: Input: sinit, sf , B, V
2: A ← {sinit}
3: ss ← sinit
4: while B > 0 and ss ̸= sf do
5: cand← Ψ[ss] \ A
6: T , sg ← MCTS(ss, cand)
7: Move to sg, collect reading xg, and compute consumed energy cgs
8: σ2

g , µg ← update GP with new observation xg
9: V ← Resampling based on new σ2

g

10: B ← B − cgs (defined in Eq. (4.3))
11: A ← A∪ {sg}
12: ss ← sg
13: end while
14: return B, A

Algorithm inputs are the initial location, sinit, the final location, sf , the assigned
budget, B and the set of sample locations, V . In the beginning, the visited locations
set contains the initial location, and the current location is also the initial location.
In order to avoid revisiting the same locations, the input of the MCTS planner should
be the cand set instead of the children set itself, Ψ[ss]. The cand set is the children
set with the visited locations removed.

The current location of the robot, ss, is considered as a root node of the MCTS
tree (line 6 in Algoeithm 4.3). The MCTS is expanded for a fixed number of iterations.
Each time, the path and leaf are chosen using UCT, as per Equation (4.1). When
a leaf is reached, a children is chosen randomly from unvisited ones and a rollout is
executed. During rollout, the planner continues to select additional random locations
until it either reaches the final destination or runs out of energy. During the MCTS
expansion and rollout, every time a candidate location is included in the tree, the
same generative model used in previous section based on Equation 4.3 is used to
estimate how much energy would be consumed.

After the tree T has been built and next location, sg, is selected, the budget for
robot is updated. Based on new sample reading, the GP is updated and based on
the updated GP, it will generates a new set of random sample locations with the
normalized variance as probabilities associated with each location. This algorithm
returns the remaining budget and the set of visited locations.

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 40

4.2 MCTS based Algorithms Results and Discus-

sion

In this section, we evaluate the two proposed methods in different environments
under different constraints. As the RMCTS selects sample locations that are poten-
tially far away while All-grid MCTS always selects nearby locations, we allow RMCTS
to also collect samples along the way towards the sample location. This ensures that
in both cases the number of collected samples is comparable.

4.2.1 Methods

We evaluate the two proposed methods (All-MCTS and RMCTS) with Orien-
teering method (called Or in the following) explained in Section 3.3.1 and a policy
gradient method (MRS) [52] using four different datasets. As we explained the Or
method in Section 3.3.1, here we briefly discuss the policy gradient method.

Policy Gradient Method (MRS)

The MRS algorithm and its implementation are described in greater detail in [52].
The objective of a Reinforcement learning is to maximize the expected reward when
following a policy π. Dynamic programming or other iterative techniques may be
used to determine a sequence of actions (in our case sample locations) that maximizes
long-term rewards [52]. However, in some cases, the state space (number of sample
locations in agricultural fields) and the action space (in our case number of sample
locations in agricultural fields) can be enormous and finding the optimal policy is not
possible. So, rather than relying on action-value methods, it is possible to use methods
that directly optimize the policy parameters based on (simulated) experiences.

By learning the values of actions, action-value methods select the appropriate
action based on those values. Without those estimates, the policy would not exist.
Rather than learning action-value methods, MRS introduces a method that learns a
parameterized policy which allows actions to be selected without consulting a value
function [87]. So, the goal would be learning the policy parameter θ, for π(a|s, θ),
based on the gradient of the performance cost function J(θ) with respect to the policy
parameter. One method of policy parameterization is soft-max action preferences
which is according to an exponential soft-max distribution [86] and is formulated as
follows:

π(a|s, θ) = eh(s,a,θ)∑
b e

h(s,b,θ)
(4.5)

where h(s, a, θ) is the parameterization for each pair of state-action. As an example,
they might be calculated by a deep artificial neural network (ANN), where θ is the
vector of all the network’s connection weights.

In its original formulation, this method does not consider budget constraints dur-
ing training. To account for it, during testing the next location proposed by the

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 41

algorithm is rejected if there is not enough budget left to reach the designated loca-
tion and then the robot moves to the final location sRi

f . In this case, the algorithm

selects sRi
f and tries to reach the final location.

4.2.2 Data Sets

Synthetic Dataset (SYNT1)

Here we consider bidimensional grid of size 30 × 30 where the scalar field h is
defined as a mixture of Gaussian distributions. Figure 4.3 (a) displays the synthetic
data set used in these experiments.

California Central Valley soil moisture dataset (CAL-SOIL)

The California Central Valley soil moisture dataset is a self developed dataset
featuring soil moisture data manually collected and interpolated in a commercial
vineyard located near Merced, California [93]. The particular vineyard examined
was not rectangular, however for the purposes of this study it was assumed to be.
Figure 4.3 (b) shows the scalar field modeled by the California Central Valley soil
moisture dataset.

NASA Chlorophyll concentration dataset (NASA1, NASA2)

The NASA chlorophyll concentration dataset includes measures collected on Sep
1, 2023, obtained from NASA Earth Observations from a Pacific ocean subregion.
The purpose of this satellite observation is to determine how much phytoplankton
is growing in the ocean. The green color of phytoplankton is due to chlorophyll [3].
All two datasets, include a scalar datafield to be estimated through measurements.
Figure 4.4 (a), and (b) show different patches from the data set.

4.2.3 Metrics

To assess and compare the performance of the various algorithms, we consider
three metrics.

MSE

The first is the mean square error (MSE) between ĥ (the estimate of h) and h
itself.

MSE =
1

n
Σn
i=1(hi − ĥi)2 (4.6)

where n is the number of cells in the grid. In our implementation, GP regression
is computed using the scikit-learn Python library [61] and its GP regression module
using Mattérn Kernel with length scale of 1 and smoothness parameter of ν = 1.5.
The choice of the kernel and of the parameters was made after having experimentally

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 42

(a) SYNT1 (b) CAL-SOIL

Figure 4.3: (a) The synthetic scalar field modeled by the mixture of Gaussian distri-
butions. (b) the scalar field modeled by the California Central Valley soil moisture
dataset. In both cases, warmer colors indicate higher values for the underlying scalar
field h.

(a) NASA1 (b) NASA2

Figure 4.4: (a) and (b) The scalar field modeled by the NASA chlorophyll concen-
tration dataset. In all cases, warmer colors indicate higher values for the underlying
scalar field h.

evaluated different alternatives and having assessed that these are the best choices.
All algorithms build the posterior for h over all grid cells based on all collected
measurements.

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 43

Remaining Budget

The second metric we consider is the remaining budget, which is the amount of
energy that has not been used when the mission terminates. Ideally, this value should
be low to ensure robot makes the best of use of its allocated energy resource.

Number of Failures

Finally, we want to minimize the number of failures of the robot. In this context, a
robot failure is defined as the event when the robot runs out of energy before reaching
the final location. As a result, any time B drops below 0 is considered a failure.

4.2.4 SYNT1 Results and Discussion

In this experiment, we compare the performance of the RMCTS with MCTS, and
MRS methods using a SYNT1 data-set. The MCTS method works the same as RM-
CTS without generating new samples at each iteration (line 9 in Algorithm 4.3). In
this case, we use 100 sample locations that are distributed throughout the environ-
ment. The robot starts from (0, 0) (upper left corner), and the final location is located
at (30, 30) (lower right corner). We consider different budgets (100 and 200). For
each case, displayed data are averages over 100 independent runs. In all simulations,
the MCTS, and RMCTS algorithms add 1000 nodes to the tree. For the function Ψ
we set M = 30. In Equation (4.1) we set c = 3. To calculate the travel cost, we
used Equation (5.3) with α = 0.5 and Λ = 1 and Manhattan distance. In RMCTS,
the resampling process is applied every other iteration and after each resampling, 100
new samples are computed, |V| = 100.

During training, MRS runs 20 simulated trajectories to update and learn the
parameter of policy π, and in the test phase it uses that learned policy to generate
an explicit action plan.

Table 4.1 summarizes the results for 100 runs of MCTS, RMCTS, and MRS meth-
ods for one robot. It can be seen that RMCTS outperforms other methods with a
tight budget, while MRS achieves better MSE with a higher budget. This is expected,
since MRS takes samples along the way, whereas RMCTS and MCTS take samples
at specific points.

A Figure 4.5 (a) and (b) show the robot’s path with B = 200 using MRS and
RMCTS. Clearly, the MRS focuses on hotspots and drives the robot to locations
with higher values. However, RMCTS encourages the robot to explore the entire
environment, which results in a better MSE.

4.2.5 CAL-SOIL Results and Discussion

In the first experiment, we compare the performance of the RMCTS with MCTS,
Or and MRS methods using a CAL-SOIL data-set. The MCTS method works the

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 44

B method MSE (std) Bre (std)

100 MCTS 0.52 (0.35) 23.72 (20.05)

100 RMCTS 0.41 (0.10) 21.14 (18.68)

100 MRS 0.68 (0.01) 27.13 (0.05)

200 MCTS 0.43 (0.28) 28.62 (19.08)

200 RMCTS 0.39 (0.19) 26.17 (17.5)

200 MRS 0.36 (0.01) 15.7 (0.05)

Table 4.1: Avg. Results for 100 runs for the SYNT1 dataset (MCTS, RMCTS, and
MRS methods).

(a) RMCTS (b) MRS

Figure 4.5: (a) and (b) The single robot path with B = 200 in SYNT1 environment.

same as RMCTS without any generating new samples at each iteration (line 9 in Algo-
rithm 4.3). In this case, we use 100 sample locations that are distributed throughout
the environment. Robot starts from (0, 0) (upper left corner), and the final location
is located at (30, 30) (lower right corner). We consider different budgets (100 and
200). For each case, displayed data are averages over 100 independent runs. In all
simulations, the MCTS, and RMCTS algorithms add 1000 nodes to the tree. For the
function Ψ we set M = 30. In Equation (4.1) we set c = 3, in Equation (5.2) we
set λ = 1, and in Equation (5.3) we set α = 0.5 and Λ = 1 and we use Manhattan
distance. In RMCTS, the resampling process is applied every other iteration and
after each resampling, 100 new samples are computed, |V| = 100.

During training, MRS runs 20 simulated trajectories to update and learn the
parameter of policy π, and in the test phase it uses that learned policy to generate
an explicit action plan.

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 45

Table 4.2 summarizes the results for 100 runs of MCTS, RMCTS, Or, and MRS
methods for one robot. It can be seen that RMCTS outperforms other methods with
a tight budget, while MRS achieves better MSE with a higher budget. The Or method
consumes almost all of the budget, but it should be noted that for example in our
implementation, the planning time for Or (40.21) is more than five times greater than
RMCTS (7.52 s) and MCTS (6.18 s). The fact that the MSE is not significantly better
in the Or method even with a higher budget is due to the fact that in orienteering,
one aims at collecting the maximum additive reward, and this can be achieved by
visiting many nearby locations that will lead to limited additional information to
better estimate the scalar field h.

B method MSE Bre

100 MCTS 3.16 18.45

100 RMCTS 2.99 15.06

100 Or 4.3 5.78

100 MRS 6.67 16

200 MCTS 2.99 16.83

200 RMCTS 2.17 12.03

200 Or 2.14 10.17

200 MRS 1.42 14

Table 4.2: Avg. Results for 100 runs for the CAL-SOIL dataset (MCTS, RMCTS,
Or and MRS methods).

A second experiment compares RMCTS with All-MCTS. The parameters are the
same as in the first experiment, except for the cost function. To carry out this
experiment, we use the formula defined by equation 4.3 with euclidean distance. As
the RMCTS selects sample locations that are potentially far away while All-MCTS
always selects nearby locations, we allow RMCTS to also collect samples along the
way towards the sample location. This ensures that in both cases the number of
collected samples is comparable.

Table 4.3 summarizes the results for 100 runs of RMCTS, and All-MCTS methods
for one robot. It can be seen that RMCTS outperforms other methods in all cases.
Figure 4.6 illustrates the path taken by a single robot using RMCTS and MRS when
B = 100. The MRS drives the robot to locations with high values based on hotspots.
However, RMCTS encourages the robot to explore the entire environment, resulting
in a better MSE.

4.2.6 NASA1 and NASA2 Results and Discussion

In the first benchmark, the RMCTS and All-MCTS methods are tested using a
NASA1 dataset. For RMCTS, we have 100 sample locations that are distributed

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 46

B method MSE (std) Bre (std) Nf

100 ALL-MCTS 3.81 (0.94) 8.18 (2.17) 11

100 RMCTS 3.66 (0.79) 7.91 (1.09) 7

200 ALL-MCTS 3.61 (0.82) 12.16 (3.04) 8

200 RMCTS 3.27 (0.70) 13.09 (3.41) 4

Table 4.3: Results for 100 runs for CAL-SOIL dataset (RMCTS and All-MCTS meth-
ods).

(a) RMCTS (b) MRS

Figure 4.6: (a) and (b) The single robot path with B = 100 in CAL-SOIL environ-
ment.

throughout the environment. For the function Ψ we set M = 30. In Eq. (4.1) we
set c = 3, and in Eq. (4.3) we use Euclidean distance. Table 4.4 summarizes the
metrics for All-MCTS and RMCTS. It can be seen that RMCTS again outperforms
All-MCTS and achieves better MSE.

In the second benchmark, RMCTS and All-MCTS methods are tested using a
NASA2 dataset. For RMCTS, we have 100 sample locations that are distributed
throughout the environment. For the function Ψ we set M = 30. In Eq. (4.1) we
set c = 3, and in Eq. (4.3) we use Euclidean distance. Table 4.5 summarizes the
metrics for All-MCTS and RMCTS. It can be seen that RMCTS again outperforms
All-MCTS and achieves better MSE. All-MCTS rewards the robot for only visiting
hotspot locations, and since there is a hotspot at the beginning of their paths, it
spends much of its time exploring it, which means that the rest of the environment
cannot be explored due to a limited budget. Alternatively, RMCTS rewards the robot
for exploring the entire environment resulting in better performance.

CHAPTER 4. SINGLE-ROBOT IPP, MCTS SOLUTION 47

B method MSE (std) Bre (std) Nf

150 ALL-MCTS 0.3 (0.09) 4.46 (3.64) 14

150 RMCTS 0.21 (0.1) 4.17 (3.02) 6

250 ALL-MCTS 0.28 (0.16) 5.18(3.14) 10

250 RMCTS 0.19 (0.08) 4.21(3.67) 5

Table 4.4: Results for 100 runs for the NASA1 chlorophyll concentration dataset
(RMCTS and All-MCTS methods).

B method MSE (std) Bre (std) Nf

100 ALL-MCTS 1.12 (0.37) 5.6 (1.74) 14

100 RMCTS 1.04 (0.29) 5.1 (1.08) 11

200 ALL-MCTS 0.91 (0.23) 9.19 (2.97) 9

200 RMCTS 0.74 (0.19) 10.45 (3.61) 5

Table 4.5: Results for 100 runs for the NASA2 chlorophyll concentration dataset
(RMCTS and All-MCTS methods).

4.3 Conclusions

An IPP using a single robot was studied in this chapter. We proposed two differ-
ent online sampling solutions based on the MCTS algorithm. When a sample location
is measured, a GP model of the scalar field is updated and used to generate a new set
of random sample locations. The Or method and Policy-Gradient-based algorithms
are compared against the learning-based methods presented in this chapter. In com-
parison to baseline methods, our RMCTS proposed approach is more accurate and
makes better use of the limited budget. Also, our proposed methods does not require
prior knowledge of the environment distribution.

Chapter 5

Multi-Robot IPP

The purpose of this chapter is to extend the problem of environmental map learn-
ing and IPP to the use case of a team of robots. In this chapter, the multi robot
informative path planning (MRIPP) is formulated and three solution methods for the
general case problem are given, one based on MCTS and resampling (MR-RMCTS),
another based on MCTS and predicting coworkers actions (MR-PMCTS), and the last
based on MCTS and heuristic method (MR-All-MCTS). In this chapter, the heuris-
tic and Or methods are used as a benchmark for comparing performance against the
other methods. The work shown here was originally presented in [76].

5.1 Multi-Robot Informative Path Planning

It is assumed that there are m robots in the team, each indicated as Ri with i ∈
[1, 2, 3, ...,m]. Without loss of generality, we assume all robots in the team are
equipped with identical sensors used to estimate h. The location of each robot (x, y-
position) is denoted by sRi

s = (sRi
x , s

Ri
y). Each robot starts from a preassigned position

sRi
init, and must terminate at a preassigned final location sRi

f . The location sRi
init models

the deployment location for robot Ri (e.g., the location where the robot is activated),
while sRi

f represents the desired end location for the robot (e.g., where the robot can
be retrieved or where its batteries can be recharged or swapped). Each robot is as-
signed a predetermined travel budget BRi limiting the distance it can travel. This
constraint models the limited energy provided by the robot’s battery. If a robot ex-
ceeds its travel budget before reaching its assigned goal location sRi

f , the robot stops
and this is considered a failure, as from a practical standpoint this will require some-
one to go and retrieve or recharge the robot in the field – a costly operation. For
simplicity, we assume in the following that all robots have the same budget BRi , but
the algorithms we present can be easily adapted for the case when this assumption
does not hold.

For this approach to be efficient, it is necessary for robots to coordinate their
efforts to avoid unnecessary duplicate work or negative interferences [80]. As part
of the measurement collection task, sample locations can be provided in advance,
chosen by experts or randomly, or selected along the way in response to collected
data. Central to our work is the necessity to perform task allocation being aware of
the distance a robot can travel before its battery is depleted. Our task allocation

48

CHAPTER 5. MULTI-ROBOT IPP 49

strategy, therefore, focuses both on avoiding duplicate work and on managing the
energy constraints.

Communication among robots is another key dimension to be considered in multi-
robot scenarios [8] where in some works all robots can share limited amounts of data
with one another irrespective of the distance [13], whereas in other approaches more
data is exchanged, but only when robots are sufficiently close to each other [52].

We present a distributed algorithm based on communication between robots to
avoid having multiple robots collecting measurements at the same locations, as ac-
cordingly to our model multiple measurements at the same site do not increase the
quality of the estimate.

5.2 MCTS based Algorithms

In this section, three solutions for the MRIPP problem are given, one based
on MCTS and resampling (MR-RMCTS), another based on MCTS and predicting
coworkers actions (MR-PMCTS), and the last based on MCTS and heuristic method
(MR-All-MCTS).

5.2.1 MR-RMCTS

For each robot Ri, let ARi ⊆ V be the set containing the locations visited by robot
Ri. Initially ARi = {sRi

init} and, by definition of ARi , throughout the execution of the
algorithm the current location of the robot sRi

s is one of the elements of ARi . Each
set ARi is iteratively expanded by the execution of an action a representing a possible
next sampling location sg in V for robot Ri. The execution of a implies that the robot
will move to sg and collect a sample at that location. Using MCTS, the goal is to
select a good sequence of sample locations, ARi , for robot Ri while considering the
travel budget, BRi , and other robots’ decisions. The meaning of good depends on the
choice of objective function(s) and will be discussed shortly.

In our proposed method each robot Ri shares its visited locations with other
robots with the objective of avoiding to have multiple robots visiting the same lo-
cations. This will lead to more distinct samples being collected and ultimately to a
better estimate for h. Our communication model assumes that robots can exchange
limited information (such as locations) at long range. This is in line with the current
technology (e.g., LoRa [83]) used by robots in agricultural applications and previous
works [13, 52].

To select the next location, each robot uses a reward function defined as follows.
For each unvisited location sg, robot Ri defines a value r

Ri
g . A possible candidate could

be rRi
g = σ2

g where σ2
g is the variance of the posterior estimate of h provided by GP

regression based on the samples collected up to that moment. With this choice, high
reward values would be assigned to locations with high uncertainty [13]. In our case,
we scale the predicted variance by the distance between the robot’s current location

CHAPTER 5. MULTI-ROBOT IPP 50

and sg location. The reward rRi
g associated with a potential sampling location sg

considered by robot Ri is therefore defined as

rRi
g =

σ2
g

d(sg, s
Ri
s)

(5.1)

where σg is variance of the candidate location sg ∈ V , and d(sg, sRi
s) is the distance

between the current location of robot Ri and sg. By introducing the distance into
the reward function we bias the algorithm to favor closer locations if the predicted
variance of two candidates is the same. The selection of the next location is per-
formed online, i.e., the reward associated with each location is not predetermined,
but re-estimated iteratively based on the locations already visited and data previ-
ously collected. The reward is then used to calculate the expected return, or the
action value estimate Qt(a). In our work we deal with an episodic task, i.e., the task
always ends after a finite amount of time, either because the robot reaches the final
location, or because it runs out of energy. In this case it is typical to define Qt(sg) as
a function of reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTg′′ ; 0 ≤ λ ≤ 1 (5.2)

where λ is a factor discounting future rewards and T is the time of the last action.
g, g′, ..., g′′ are the selected sample locations and rg is the reward associated with
the sampling location g. Algorithm 5.4 shows the planning algorithm independently
executed by each robot.

Algorithm 5.4 Online MR-RMCTS planner (executed by each robot Ri)

1: Input: V , sRi
init, s

Ri
f , BRi

2: ARi ← {sRi
init}

3: sRi
s ← sRi

init

4: while BRi > 0 and sRi
s ̸= sRi

f do

5: cand[sRi
s]← Ψ[sRi

s]−ARi

6: cand[sRi
s]← cand[sRi

s]−ARj for all j ̸= i
7: T , sg ← MCTS(sRi

s , cand[sRi
s])

8: Move to sg, collect reading x
Ri
g , and measure consumed energy cgs

9: σ2
g ← update GP with new observation xRi

g

10: V ← Resampling based on new σ2
g

11: BRi ← BRi − cgs
12: ARi ← ARi ∪ {sg}
13: sRi

s ← sg
14: Brodacast(sRi

s)
15: end while
16: return BRi , ARi

The algorithm takes as input the set of V , the initial and final locations sRi
init and

sRi
f , and the budget BRi for the each robot.

CHAPTER 5. MULTI-ROBOT IPP 51

A children set Ψ[ss] contains the locations that can be reached from each location
ss. As we consider problem instances with tens or hundreds of possible locations,
considering all of them would lead to search trees with extremely high branching
factors. Therefore, to minimize planning time, we limit the set of locations that are
considered from each locations, and this set is returned by the function Ψ. More
specifically, we limit the branching factor to M (an even number). For each location
sg, M/2 elements in Ψ are the nearest elements in V and M/2 − 1 are randomly
chosen from the remaining locations. Moreover the final location, sRi

f is always added
to Ψ. This selection balances global exploration and local exploitation. The addition
of sRi

f to Ψ ensures that from any location robot Ri can always consider moving to the

final goal location. This is useful when the travel budget is about to expire. candRi

is the set of candidate locations for the current location and is obtained by removing
already visited locations ARi from the set of reachable locations returned by Ψ.

The current location of the robot, sRi
s , is considered as a root node of the MCTS

tree (line 7 in Algorithm 5.4). The MCTS is expanded for a fixed number of iterations.
Each time, the path and leaf are chosen using UCT, as per Equation (4.1). When a
leaf is reached, a rollout is executed. During rollout, the planner continues to select
additional random locations until it either reaches the final destination or runs out of
energy. During the MCTS expansion and rollout, every time a candidate location is
included in the tree, a generative model is used to estimate how much energy would
be consumed. This estimate is given by the formula

cgs = αd(sRi
s , sg) + ε(Λ) (5.3)

where d(sRi
s , sg) is the distance between the current location, sRi

s and candidate lo-
cation, sg, and U(Λ) is random sample from a uniform distribution over the interval
[0,Λ].

After the tree T has been built and next location, sRi
g , is selected, the budget for

robot Ri is updated. Based on new sample reading, the GP is updated and based
on the updated GP, it will generates a new set of random sample locations with the
normalized variance as probabilities associated with each location. In the event that
one of the robots reaches its final destination or runs out of energy, other robots will
continue their sampling task.

5.2.2 MR-PMCTS

Algorithm 5.5 sketches how the single robot SMCTS algorithm explained in Sec-
tion 4.1.3, Algorithm 4.3 can be extended for multiple robots. Algorithm inputs are
the set of sample locations, V , initial location, sRi

init, final location, s
Ri
f , and assigned

budget, BRi for each robot. In the beginning, the visited locations set contains the
initial location, and the current location is also the initial location. In order to avoid
revisiting the same locations, the input of the MCTS planner should be the cand set
instead of the children set itself, Ψ[sRi

s]. You can find detailed information about
choosing the children set and branching factor in Section 4.1.3.

CHAPTER 5. MULTI-ROBOT IPP 52

Throughout this section, we will explain how the cand set is generated and will
be used to choose the next sampling location. The cand set for current location of
robot Ri, s

Ri
s , is given by Equation 5.4

cand[sRi
s] = Ψ[sRi

s]−ARi − ∪mj=1j ̸=i
ARj − ∪mj=1j ̸=i

sRj
g (5.4)

where Ψ[sRi
s] is the children set for the current location s

Rj
s , ARi is the set of visited

locations by the robot itself, ARj is the set of visited locations by other robots and
s
Rj
g is the predicted next location for other robots. Continuing our discussion, we will

explain how we calculate s
Rj
g .

Our proposed method relies on predicting the next movement of other robots
to prevent two robots from visiting the same location simultaneously, which is the
main contribution of this section. Simultaneous visits to the same location by multiple
robots are undesirable because of possible collisions, but also because duplicate efforts
lead to less efficient resource use. The proposed algorithm also balances exploration
and exploitation based on energy consumed, remaining energy, and rewards each robot
receives after visiting different locations. This will allow each robot to determine its
next destination while respecting the budget constraint.

As discussed previously, let us assume there are m robots in the team. In our
proposed method, each robot Ri shares its visited locations with other robots. Even
though robots share their locations at each iteration, they do not share the values of
the collected samples. Using the data collected at the sample locations, a posterior of
h can be estimated using standard GP regression algorithms. As this posterior was
created based on local data from one robot, it remains local and is not shared. Our
communication model assumes that robots can exchange limited information (such as
locations) at long range. In particular, LoRa [83] permits transmitting limited data
at long distances.

Using the information that robot Ri receives from other robots, it removes already
visited locations by other robots and the next decision (sample location) of the other
robots as well. Robot Ri predicts the next decision (the next sample location that

will be visited), s
Rj
g of other robots, Rj, using the following equation

rRj
g =

σ2
g

d(s
Rj
s , sg) + k · ε(1, d)

(5.5)

where σg is variance of the candidate location sg ∈ V , and d(s
Rj
s , sg) is the Euclidean

distance between the current location of robot Rj, s
Rj
s , and selected location, sg, k is

a constant and ε(1, d) is random sample from a uniform distribution over the interval
[1, d]. If two candidates’ predicted variances are the same, adding the distance to the
reward function biases the algorithm toward closer locations. In Equation (5.5) as in
Equation (4.4), noise is added in the predictive models to account for the uncertainty
in travel costs. Robot Rj’s current location is considered the last location that it has
shared. In this model, σg is robot Ri’s local variance at location sg, since robots do
not share their sensory information, even though they share the locations they have
visited.

CHAPTER 5. MULTI-ROBOT IPP 53

Lemma 5.2.1. In case sr has been predicted in step k as the next sampling location of
robot j, i.e s

Rj
g , which will be eliminated from candidate locations of current location

robot Ri, sr still has a chance of being considered in candidate location of robot Ri

and being chosen in step k +m, where m ≥ 1. (In other words, removing the nodes
from candidates in step k does not remove them permanently)

Proof. Let us consider sample location sr is in the children set in step k,
Ψ[sk] = {sl, ..., sr, ..., sf} and in step k +m, Ψ[sk+m] = {st, ..., sr, ..., sf} for location
sk and sk+m. Let us assume in step k, sr has been removed from cand[sRi

k] because

it has been predicted as a s
Rj
g , so cand[sRi

k] = {sl, , ..., sf}.
In step k + m, if sr has not visited by other robots and has not predicted as a

next sampling location by other robots, then it will appear in the cand[sRi
k+m] in step

k +m that it has been removed from it previously in step k (that is due to the fact
that in each step and for each location, the Ψ[sk] are independent from each other)
and then it has a chance of being chosen based on Equation 5.5.

The MCTS algorithm is used to select the next location to be visited, sg. The
current location of the robot Ri, s

Ri
s is considered as a root node of the MCTS tree.

Considering all visited locations by robot Ri and other robots j ̸= i that have
been shared with robot Ri and all predicted locations for other robots j ̸= i, the next
location, sg will be chosen as follows:

sg = argmaxQt(sg) for sg ∈ cand[sRi
s]

with

cand[sRi
s] = Ψ[sRi

s]−ARi − ∪mj=1j ̸=i
ARj − ∪mj=1j ̸=i

sRj
g

(5.6)

where Ψ[sRi
s] is the children set for the current location sRi

s , ARi is the set of visited

locations by the robot itself, ARj is the set of visited locations by other robots, and s
Rj
g

is the predicted locations visited by the other robots in a team. The robot predicts the
next location of other robots using Equation 5.5. In Equation 5.6, Qt(sg) is defined
as a function of the reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTgT ; 0 ≤ λ ≤ 1

where λ is a factor discounting future rewards, T is the time of the last action,
g, g′, ..., gT are selected sample locations and rg is the reward associated with the
sampling location g.

For each unvisited location sg, robot Ri defines a value rRi
g . A possible candidate

could be rRi
g = σ2

g where σ
2
g is the variance of the posterior estimate of h provided by

GP regression based on the samples collected up to that moment. With this choice,
high reward values would be assigned to locations with high uncertainty [13]. In
our case, we scale the predicted variance by the distance between the robot’s current

CHAPTER 5. MULTI-ROBOT IPP 54

location and sg location. The reward r
Ri
g associated with a potential sampling location

sg considered by robot Ri is therefore defined as

rRi
g =

σ2
g

d(sRi
s , sg) + 0.1 · ε(1, d)

(5.7)

where σg is variance of the candidate location sg ∈ V , d(sRi
s , sg) is the Euclidean

distance between the current location of robot Ri and sg and ε(1, d) is random sample
from a uniform distribution over the interval [1, d]. By introducing the distance into
the reward function we bias the algorithm to favor closer locations if the predicted
variance of two candidates is the same.

Algorithm 5.5 Online MR-PMCTS planner (executed by each robot Ri)

1: Input: V , sRi
init, s

Ri
f , BRi

2: ARi ← {sRi
init}

3: sRi
s ← sRi

init

4: while BRi > 0 and sRi
s ̸= sRi

f do

5: cand[sRi
s] = Ψ[sRi

s]−ARi

6: for all j ̸= i& j ∈ m do
7: estimate s

Rj
g based on argmax r

Rj
g (Eq. (5.7))

8: cand[sRi
s]← cand[sRi

s]− sRj
g

9: cand[sRi
s]← cand[sRi

s]−ARj

10: end for
11: T , sg ← MCTS(sRi

s , cand[sRi
s])

12: Move to sg, collect reading x
Ri
g , and measure consumed energy cgs

13: σ2
g ← update GP with new observation xRi

g

14: BRi ← BRi − cgs
15: ARi ← ARi ∪ {sg}
16: sRi

s ← sg
17: Brodacast(sRi

s)
18: end while
19: return BRi , ARi

Lemma 5.2.2. If the robots’ current locations are different, but their distance to the
candidate location is the same, they will not choose the same location.

Proof. The next location is selected based on argmaxQt(sg) for sg where Qt(sg) is
defined as a function of reward sequence

Qt(sg) = rtg + λrt+1
g′ + ...+ λT−trTgT ; 0 ≤ λ ≤ 1

Qt(sg) =
σ2
g

d(sRi
s , sg) + 0.1ϵ(1, d)

+ λ
σ2
g′

d(sRi
s , sg′) + 0.1ϵ(1, d)

+ ...

CHAPTER 5. MULTI-ROBOT IPP 55

where λ is a factor discounting future rewards and T is the time of the last action.
g, g′, ..., g′′ are selected sample locations and rg is the reward associated with the
sampling location g. As it can be seen, rtg depends on the distance metrics plus
random sample from a uniform distribution, so even though the variance may be
equal, the distance will not be similar since it uses random samples and the rewards
will not be equal either.

The planning algorithm determines the next location for Ri with the objective
of avoiding to have multiple robots visiting the same locations. By avoiding to have
multiple robots revisit the same places, more sampling locations can be visited and
then the final reconstruction of the scalar field h will be better since it will be informed
by more data. The selection of the next location is performed online, i.e., the reward
associated with each location is not predetermined, but re-estimated iteratively based
on the locations already visited and data previously collected.

5.2.3 MR-All-MCTS

In this section, we extend the All-MCTS method defined in Algorithm 4.2 which
has been built upon the AdaptGP-MCTS discussed in [85] to multi robot scenarios.
The method presented in this section, operates on a grid and aims that each robot Ri

in a team reaches the preassigned goal location before the robot runs out of energy.
Each robot’s next sampling location is selected using the MCTS algorithm where

the current location of the robot sRi
s is considered as the root node of the MCTS

tree. MCTS expands the tree by adding some, or all, of the node’s children to the
tree. A children set contains the locations that can be reached from each sample
location. Throughout this section, we consider each grid cell (and therefore each
robot position) has an associated children set Ψ[sRi

s] including all locations that can
be reached through the execution of a single motion action (north, south, east, west,
north-east, north-west, south-east, south-west). The children set Ψ[sRi

s] for robot
Ri includes all grid neighbors located one or two hops away from the current robot
location (see Figure 4.2(a)). The highlighted area represents the children; one step
neighbors are shown in blue and two step neighbors are in orange color. Due to
the fact that the children set includes all possible neighbors surrounding the robot’s
current location, we call this algorithm MR-All-MCTS. In addition to one-step and
two-step neighbours, the final location sf is always added to the children set. The
addition of the final location ensures that from any location each robot Ri can always
consider moving to the final goal location. This is useful when the travel budget is
about to expire. The reward rg associated with each neighbor potential sampling
location sg considered by robot Ri is defined as (as per the original method in [85]):

rg = σ + β1/2µ (5.8)

where σ is the variance of the candidate location, µ is mean, and β is the number of
measurements collected along the way. The β encourages the robot to visit the peak
of the environment before exploring unknown areas (higher variance).

CHAPTER 5. MULTI-ROBOT IPP 56

The selection of the next location is performed online, i.e., the reward associated
with each location is not predetermined, but re-estimated iteratively based on the
locations already visited and data previously collected using standard GP regression
algorithms. That is to say that in Equation (5.8), σ and µ are the values estimated
by the GP regression algorithm based on the samples collected thus far.

At each iteration of the MCTS, the path and leaf are chosen randomly if there
are unvisited children or on the basis of the UCT formula defined in Equation (4.1).
Then, a rollout is executed once a leaf has been reached to estimate its value, or
Q. In our implementation we use a simple random rollout without updating the GP
distribution. A generative model is used during the expansion and rollout of MCTS
to estimate the energy consumption of each candidate location. cgs is an estimate of
energy consumed by the robot Ri when it moves from its current location sRi

s to the
designated candidate location sg and is given by the formula defined in Equation (5.9)

cgs = d(sRi
s , sg) + k · ε(1, d) (5.9)

where d(sRi
s , sg) is the Euclidean distance between the current location, sRi

s and candi-
date location sg, k is a constant and ε is a random sample from a uniform distribution
over the interval [1, d]. We use the uniform distribution over the interval [1, d] but any
generic model can be used. After the tree T has been built, the next location sg is
selected based on the UCT formula defined in Equation (4.1). The robot Ri moves to
sg and collects a sample. Then, the budget of the robot is updated by considering the
amount of energy consumed during the motion and the GP is updated based on the
value read at sg. The process continues until the robot reaches the final destination,
which is a success, or it runs out of energy, which is a failure. Algorithm 5.6 sketches
the process.

Algorithm 5.6 Online MR-All-MCTS planner (executed by each robot Ri)

1: Input: sRi
init, s

Ri
f , BRi

2: ARi ← {sRi
init}

3: sRi
s ← sRi

init

4: while BRi > 0 and sRi
s ̸= sRi

f do

5: cand[sRi
s]← Ψ[sRi

s]−ARi

6: cand[sRi
s]← [sRi

s]−ARj for all j ̸= i
7: T , sg ← MCTS(sRi

s , cand[sRi
s])

8: Move to sg, collect reading x
Ri
g , and measure consumed energy cgs

9: σ2
g ← update GP with new observation xRi

g

10: BRi ← BRi − cgs
11: ARi ← ARi ∪ {sg}
12: sRi

s ← sg
13: Brodacast(sRi

s)
14: end while
15: return BRi , ARi

CHAPTER 5. MULTI-ROBOT IPP 57

Algorithm inputs are initial location, sRi
init, final location, s

Ri
f , and assigned bud-

get, BRi for each robot. In the beginning, the visited locations set contains the initial
location, and the current location is also the initial location. In order to avoid re-
visiting the same locations, the input of the MCTS planner should be the cand set
instead of the children set itself, Ψ[sRi

s]. The cand set is the children set with the
visited locations removed. This algorithm returns the remaining budget and the set
of visited locations for each robot.

5.3 Results and Discussion

5.3.1 Synthetic Dataset (SYNT1) Results

In this experiment, we compare the MR-RMCTS with three different alternatives.
The first is a non-coordinated MCTS method (MR-NCMCTS), the second is MCTS
without resampling (MR-MCST), and the third is Multirobot Planning for Informed
Spatial Sampling (MR-MRS) [52]. MR-NCMCTS is the same as MR-RMCTS method
but without any data shared between robots (line 14 in the Algorithm 5.4). MR-
MCTS is also the same as MR-RMCTS method, but without the resampling step (line
10 in the Algorithm 5.4). MR-MRS is the extension of planning method described
in section4.2.1 and is a decentralized sampling approach where each robot in a team
performs an informed survey using a policy-gradient-based sampling strategy [52].

To assess the performance of the various algorithms, we consider two metrics.
The first is the mean square error between ĥ (the estimate of h) and h itself. In our
implementation, GP regression is computed using the scikit-learn Python library and
its GP regression module using Mattérn Kernel with length scale of 1 and smoothness
parameter of ν = 1.5. The choice of the kernel and of the parameters was made after
having experimentally evaluated different alternatives and having assessed that these
are the best choices. The second metric is the remaining budget, which is the amount
of budget that has not been used when the mission terminates.

The synthetic dataset (SYNT1) used in this section is introduced in Section 4.2.2
with the scalar field h is defined as a mixture of Gaussian distributions. The set
V consists of 100 locations. Each robot starts from (0, 0) (upper left corner), and
the final location is located at (30, 30) (lower right corner). We consider different
numbers of robots (3 and 5) and different budgets (100 and 200). For each case,
displayed data are averages over 100 independent runs. In all simulations, the MR-
MCTS, MR-NCMCTS, and MR-RMCTS algorithms add 1000 nodes to the tree. For
the function Ψ we set M = 30. In Equation (4.1) we set c = 3, in Equation (5.2) we
set λ = 1, and in Equation (5.3) we set α = 0.5 and Λ = 1 and we use Manhattan
distance. In MR-RMCTS, the resampling process is applied every other iteration
and after each resampling, 30 new samples are computed, |V| = 30. The MR-MRS
method seeks to collect samples at locations with high values for the function h
at earlier stages of the exploration. During training, MR-MRS runs 20 simulated
trajectories to update and learn the parameter of policy π, and in the test phase it

CHAPTER 5. MULTI-ROBOT IPP 58

uses that learned policy to generate an explicit action plan.
Table 5.1 summarizes the average metrics for MR-MCTS, MR-MCTS, MR-MRS

and MR-NCMCTS for 100 runs. The table displays the initial budget B, the number
of robots in a team NRi

, the average MSE error and average remaining budget for
each robot Bre. The numerical comparison confirms the superiority of MR-RMCTS
across the board. As the budget and number of robots increase, the performance of
MR-NCMCTS becomes similar to MR-MCTS. With a greater number of robots and
a large budget, it is possible to visit numerous locations even without coordination.
However, this is not the case when the number of robots is smaller or the budget is
tight, and in such cases coordination is key. As a result of resampling, MR-RMCTS
achieves a lower MSE because based on the updated GP it generates a better set of
sample locations to explore. A better selection of sample points during mission can
give an even better MSE when V was not chosen wisely at the beginning of the mission.
MR-MCTS, MR-NCMCTS and MR-RMCTS do not need any prior knowledge about
the prior model of the environment whereas MR-MRS needs to know the prior model
as a reward map. Also, MR-MRS requires pre-training, while MR-MCTS and MR-
RMCTS are online and can choose the next locations on the fly. To give an order of
magnitude, training time for one robot in MR-MRS on Ubuntu machine with 32 G
RAM is about 17 minutes, while MR-RMCTS and MR-MCTS do not need training
and planning time for both on the same machine is below 15 seconds (cumulative
time for all planning stages alternating with execution).

Figure 5.1(a) and 5.1(b) show sample paths for 3 robots with B = 100. With
MR-MRS, robots focus on areas with high values for the underlying function being
reconstructed (warmer colors), while in MR-RMCTS, robots visit all areas. As the
goal is to reconstruct the underlying function h with low RMSE error, to do that
robots must visit both areas with high and low values.

(a) MR-RMCTS (b) MR-MRS

Figure 5.1: (a)-(b) Three-robots sampling paths with budget B = 100 in synthetic
environment using MR-RMCTS and MR-MRS.

CHAPTER 5. MULTI-ROBOT IPP 59

B NRi
method MSE Bre

100 3 MR-MCTS 0.52 13.72

100 3 MR-RMCTS 0.47 11.23

100 3 MR-NCMCTS 1.27 14.1

100 3 MR-MRS 1.39 12

100 5 MR-MCTS 0.38 13.21

100 5 MR-RMCTS 0.35 11.29

100 5 MR-NCMCTS 0.81 15.04

100 5 MR-MRS 1.19 6

200 3 MR-MCTS 0.48 23.72

200 3 MR-RMCTS 0.41 23.13

200 3 MR-NCMCTS 0.54 27.11

200 3 MR-MRS 1.13 34

200 5 MR-MCTS 0.35 21.32

200 5 MR-RMCTS 0.32 18.71

200 5 MR-NCMCTS 0.49 20.41

200 5 MR-MRS 0.65 20

Table 5.1: Avg. Results for 100 runs for the synthetic dataset.

5.3.2 California Central Valley Soil Moisture Dataset (CAL-
SOIL) Experiment I Results

In this experiment, we test MR-RMCTS, MR-MCTS, MR-NCMCTS and MR-
MRS methods using a data-set for soil moisture outlined in Section 4.2.2. The meth-
ods and metrics are introduced in Section 5.3.1. In this set of experiments, we use 100
sample locations that are distributed throughout the environment. The parameters
are the same as Section 5.3.1.

Table 5.2 summarizes results for 100 runs of MR-MCTS, MR-RMCTS, and MR-
MRS methods for teams of three, five, and ten robots. Similar to other cases, we also
find that MR-RMCTS outperforms other methods when the budget is tight, while
MR-MRS outperforms other methods when the budget is higher. MR-MRS performs
better with higher budgets since it considers the samples’ locations at each step rather
than our method, which considers samples at specific locations.

Figure 5.2 (a) and (b) show the sampling path for 3 robots with B = 100 while
Figure 5.3 (a) and (b) show the sampling path for 3 robots with B = 200 and
Figure 5.4 (a) and (b) show the sampling path for 5 robots with B = 100. With
MR-RMCTS the robots visit the most informative locations which leads to a more
accurate reconstruction of the spatial domain and lower MSE.

CHAPTER 5. MULTI-ROBOT IPP 60

B NRi
method MSE Bre

100 3 MR-MCTS 2.83 12.87

100 3 MR-RMCTS 2.50 10.62

100 3 MR-MRS 6.67 17

100 5 MR-MCTS 2.53 17.38

100 5 MR-RMCTS 2.41 15.64

100 5 MR-MRS 6.23 28

200 3 MR-MCTS 2.46 20.66

200 3 MR-RMCTS 2.37 12.27

200 3 MR-MRS 1.08 13

200 5 MR-MCTS 2.38 16.38

200 5 MR-RMCTS 2.14 14.37

200 5 MR-MRS 0.10 6

100 10 MR-MCTS 2.17 27.35

100 10 MR-RMCTS 1.84 25.11

100 10 MR-MRS 0.23 12

Table 5.2: Avg. Results for 100 runs for the CAL-SOIL dataset.

5.3.3 California Central Valley Soil Moisture Dataset (CAL-
SOIL) Experiment II Results

We test and compare the MR-PMCTS and MR-All-MCTS methods on the Cal-
ifornia Central Valley soil moisture dataset introduced in Section 4.2.2. Metrics are
the same as those introduced in Section 4.2.3. For MR-PMCTS, we have 100 sam-
ple locations that are distributed throughout the environment. More precisely, their
location was determined by sampling from a uniform distribution, i.e., the locations
are not informed by the underlying unknown scalar field. For the function Ψ we
set M = 30. In Equation (4.1) we set c = 3, and in Eq. (5.9) we use Euclidean
distance. As the MR-PMCTS selects sample locations that are potentially far away
while MR-All-MCTS always selects nearby locations, we allow MR-PMCTS to also
collect samples along the way towards the sample location. This ensures that in both
cases the number of collected samples is comparable.

Table 5.3 summarizes the metrics for MR-All-MCTS and MR-PMCTS for 100
runs. The table displays the budget B, the number of robots NRi

, the average MSE
error, average remaining budget for each robot Bre and number of failures of each
robot Nf . The numerical comparison shows that MR-PMCTS outperforms MR-All-
MCTS across the board. As the budget and number of robots increase, the per-
formance of MR-All-MCTS becomes similar to MR-PMCTS. This happens because
with a large budget and a large number of robots, it is possible to visit more locations

CHAPTER 5. MULTI-ROBOT IPP 61

(a) MR-RMCTS (b) MR-MRS

Figure 5.2: (a)-(b) Three-robots sampling paths with budget B = 100 in vineyard
environment using MR-RMCTS and MR-MRS.

(a) MR-RMCTS (b) MR-MRS

Figure 5.3: (a)-(b) Three-robots sampling paths with budget B = 200 in vineyard
environment using MR-RMCTS and MR-MRS.

without coordination. The opposite is true when the number of robots is smaller or
the budget is tight, and in such cases coordination is essential. This is ensured by the
different reward function used by MR-PMCTS. Robots are encouraged to explore the
entire area by the reward function introduced in Equation 5.7 rather than focusing
on the hotspots.

Figures 5.5(a) and 5.5(b) show the paths taken by 5 robots with B = 100 using
MR-PMCTS and MR-All-MCTS, respectively. In MR-PMCTS, the reward function
encourages the robots to explore the entire environment while in MR-All-MCTS,
the reward function drives them to visit hotspot locations first, and thus they cannot
explore the rest of the environment due to budget constraints. Therefore, with tighter
budgets, MR-PMCTS perform better than MR-All-MCTS.

CHAPTER 5. MULTI-ROBOT IPP 62

(a) MR-RMCTS (b) MR-MRS

Figure 5.4: (a)-(b) Five-robots sampling paths with budget B = 100 in vineyard
environment using MR-RMCTS and MR-MRS.

5.3.4 NASA Chlorophyll Concentration Dataset (NASA3)
Results

In this benchmark, MR-PMCTS and MR-All-MCTS methods are compared using
a Chlorophyll concentration dataset introduced in Section 4.2.2. Metrics are the same
as those introduced in Section 4.2.3. For MR-PMCTS, again, we have 100 sample
locations that are distributed throughout the environment. For the function Ψ we
set M = 30. In Equation (4.1) we set c = 3, and in Equation (5.9) we use Euclidean
distance. Table 5.4 summarizes the metrics for MR-All-MCTS and MR-PMCTS. It
can be seen that MR-PMCTS again outperforms MR-All-MCTS with a tight budget,
while MR-All-MCTS achieves better MSE with a higher budget.

Figure 5.6 (c) and (d) show the paths taken by 5 robots with B = 100 using MR-
PMCTS and MR-All-MCTS, respectively. MR-All-MCTS rewards the robots for only
visiting hotspot locations, and since there is a hotspot at the beginning of their paths,
they spend much of their time exploring it, which means they can not explore the
rest of the environment due to a limited budget. Alternatively, MR-PMCTS rewards
the robot for exploring the entire environment resulting in better performance with
a tight budget.

5.4 Conclusions

In this chapter, we proposed various online distributed multi-robot sampling so-
lutions based on the MCTS algorithm which are scalable to the size of the team. To
minimize revisiting locations, robots share their past experiences (visited sampling
locations). Also, each robot estimates the next movement and decision of the others
in order to minimize revisiting locations. A GP model of the scalar field being esti-

CHAPTER 5. MULTI-ROBOT IPP 63

B NRi
method MSE (std) Bre(std) Nf

100 1 MR-All-MCTS 3.81 (0.94) 8.18 (2.17) 11

100 1 MR-PMCTS 3.66 (0.79) 7.91 (1.09) 7

100 3 MR-All-MCTS 3.52 (0.80) 9.24 (3.41) 9

100 3 MR-PMCTS 3.21 (0.71) 8.22 (2.87) 5

100 5 MR-All-MCTS 2.43 (0.83) 12.96 (3.27) 10

100 5 MR-PMCTS 2.30 (0.64) 10.78 (2.76) 6

200 1 MR-All-MCTS 3.61 (0.82) 12.16 (3.04) 8

200 1 MR-PMCTS 3.27 (0.70) 13.09 (3.41) 4

200 3 MR-All-MCTS 2.31 (0.68) 14.11 (3.81) 7

200 3 MR-PMCTS 2.38 (0.73) 14.17 (4.20) 4

200 5 MR-All-MCTS 2.35 (0.55) 13.01 (4.10) 7

200 5 MR-PMCTS 2.21 (0.48) 11.90 (3.29) 3

Table 5.3: Results for 100 runs for California Central Valley soil moisture dataset.

mated is updated every time a sample location is measured and is used in the process
of generation of a new set of random sample locations. Also, our proposed solutions
do not require prior knowledge of the environment distribution.

The different learning based methods proposed in this chapter (MR-RMCTS,
MR-PMCTS and MR-All-MCTS) were compared against MR-MRS, MR-NCMCTS
and MR-MCTS. The algorithms have been compared on a variety of datasets to
demonstrate that the results generalize and aren not simply point solutions. Of
them, the MR-PMCTS performs more accurate with less failure rate to give the
faster solution.

CHAPTER 5. MULTI-ROBOT IPP 64

(a) MR-PMCTS (b) MR-All-MCTS

Figure 5.5: (a)-(b) Five-robots sampling paths with budget B = 100 in vineyard
environment (CAL-SOIL) using MR-PMCTS and MR-All-MCTS.

B NRi
method MSE (std) Bre(std) Nf

100 1 MR-All-MCTS 1.12 (0.37) 5.6 (1.74) 14

100 1 MR-PMCTS 1.04 (0.29) 5.1 (1.08) 11

100 3 MR-All-MCTS 0.93 (0.28) 7.18 (2.01) 9

100 3 MR-PMCTS 0.84 (0.23) 8.1 (2.17) 7

100 5 MR-All-MCTS 0.69 (0.17) 9.80 (3.21) 9

100 5 MR-PMCTS 0.48 (0.11) 8.23 (2.84) 4

200 1 MR-All-MCTS 0.91 (0.23) 9.19 (2.97) 9

200 1 MR-PMCTS 0.74 (0.19) 10.45 (3.61) 5

200 3 MR-All-MCTS 0.42 (0.16) 8.76 (2.64) 8

200 3 MR-PMCTS 0.37 (0.13) 8.31 (2.26) 5

200 5 MR-All-MCTS 0.28 (0.07) 11.04 (3.49) 6

200 5 MR-PMCTS 0.32 (0.09) 11.27 (4.18) 6

Table 5.4: Results for 100 runs for the NASA chlorophyll concentration dataset.

CHAPTER 5. MULTI-ROBOT IPP 65

(a) MR-PMCTS (b) MR-All-MCTS

Figure 5.6: (a)-(b) Five-robots sampling paths with budget B = 100 in ocean envi-
ronment using SMCTS and All-MCTS.

Chapter 6

Real World Experiments

In this chapter, a single robot MCTS method is tested on a real robot to evaluate
and verify the proposed method’s feasibility and performance. The first section dis-
cusses the Husky platform, the method, and the test locations. In the second section,
we provide the results and discuss the key takeaways.

6.1 Experiment Setup

The purpose of this section is to implement and test one of our proposed method
on Husky robot in the field. Implementing simulated code on real robots poses many
challenges. Examples include high costs associated with technology integration, soft-
ware maintenance, and hardware purchases [32].

6.1.1 Platform

We use a Clearpath Husky robotic platform with an average top speed of 3.3 feet
per second (1m/s). Husky is a medium-sized platform that can be customized with
cameras, manipulators, and more. Detailed technical specifications can be found in
the data-sheet [2]. In this experiment, the robot is equipped with a Sick LMS111
LiDAR in the front, a Bosch 9-DOF axis Orientation BNO085 IMU [1], a Ublox
GNSS receiver, and an Oak-D 3D camera by Luxonis.

In current satellite navigation systems, real-time kinematic positioning (RTK) is
used to correct for common errors [4]. The error can be reduced by comparing the
measurements from the signals between multiple satellites. By doing this, the unit
is able to calculate their relative position within millimeters [18]. As a first step, we
set up the RTK base station. Figure 6.1 shows the Husky robot along with the RTK
base station.

The robot is controlled by an onboard NVIDIA Jetson Orin Nano developer kit
which is a compact edge AI board, built with Jetson Orin™ Nano 8GB and ROS 2
Humble. The jetson is accessible over remote access SSH or VNC.

We launch the main husky control before running the RMCTS planner after all
sensors are launched (IMU and GPS). The ROS2 Navigation Stack (Nav2) provides
deployment-grade and high-quality navigation system for mobile robots in complex
environments [51]. It provides the capability to follow sequential waypoints. A ROS2
node provides localization using an Extended Kalman Filter based on data from these

66

CHAPTER 6. REAL WORLD EXPERIMENTS 67

sensors, odometry readings, and motion commands. In outdoor environments such
as orchards, farms and vineyards, robots movement is limited by the presence of
obstacles such as tall grass and weeds. The robot can traverse safely among these
grass, but that can be perceived as obstacles by LiDAR sensors, and then force the
robot to stop. In [68], the authors presented the novel algorithm based on YOLOv8
deep neural network-based object detection algorithm to detect traversable zones,
overcoming the limitation that tall grass acts as an obstacle. In these experiments,
we use the GPS navigation plugin which enables localization and Nav2 with the
visual-based obstacle avoidance plugin introduced in [68].

Figure 6.1: The Husky robot and the RTK base station.

6.1.2 Method

In this section, we employ the RMCTS method presented in Algorithm 4.3 in
Section 4.1.3 in order to test the algorithm on a real robot. Since this is a real-time
method and to increase the algorithm’s speed, we removed the step of generating new
sample points based on the updated GP (line 9 in Algorithm 4.3). These test cases
demonstrates how RMCTS works on a real platform, but other proposed methods
can be applied and tested as well.

CHAPTER 6. REAL WORLD EXPERIMENTS 68

6.1.3 Field Test Locations

In the first experiment, we conduct the experiment on our campus, which serves
as a controlled outdoor environment. The second one, which took place in a pistachio
orchard, was designed to challenge the robot’s capabilities in a more complex setting.

Carol Tomlinson-Keasey Quad, University of California, Merced

In one of the experiments, we test the method on Carol Tomlinson-Keasey Quad
at University of California, Merced. Figure 6.2 shows a map of the location obtained
from Google maps. In this experiment, 20 sample locations were used, 10 randomly
selected and 10 manually selected. Figure 6.3 shows the location of 20 sample points.

Figure 6.2: Aerial view of the Carol Tomlinson-Keasey Quad area where the experi-
ments took place.

Pistachio Orchard

A pistachio orchard in California’s San Joaquin valley is used to model the GP
for this set of experiments. This orchard consist of 35 rows with 21 trees in each row.
Each tree is separated by a distance of about 6 feet 5 inches (2 meters) and each row
is separated by a distance of about 9 feet 8 inches (3 meters) for a plot size of roughly
6.1 acres (2.5 hectare). 18 trees are selected as sample trees for measuring stem
water potential (SWP). Figure 6.4 shows the top view of the orchard captured from

CHAPTER 6. REAL WORLD EXPERIMENTS 69

Figure 6.3: 20 sample locations spread across the Carol Tomlinson-Keasey Quad area.

google maps. Figure 6.5 shows the placement of the sensors. We utilize the average
of SWP measurements collected in three different data collection in [56] to generate
the underlying field. To interpolate and predict the values in the target region, we
use the GP regression with the Matern kernel with length-scale equal to 1.5. There
are 50 sampling locations in this experiment, 25 randomly chosen and 25 manually
selected. Figure 6.6 shows the Husky robot platform gathering leaf temperature data
from a pistachio orchard using a multi-spectral camera.

6.2 Results and Discussion

6.2.1 Carol Tomlinson-Keasey Quad Results

Figure 6.7 shows the Husky robot at Carol Tomlinson-Keasey Quad, where these
experiments were conducted. Running the RMCTS method on a real robot is chal-
lenging due to the difference between Cartesian coordinate system (x-y) and geo-
graphic coordinate system (GCS) (lat-long). In previous chapters, all simulations
were presented in Cartesian coordinates. A set of sample points, V is one of the
inputs to the algorithm. In this case, we have 20 sample points represented in GSC.
First, we need to convert locations in latitude and longitude to Cartesian coordi-

CHAPTER 6. REAL WORLD EXPERIMENTS 70

Figure 6.4: Top view of the pistachio orchard

nates. To accomplish this, we use the python package utm. Universal Transverse
Mercator coordinate system (UTM) is a map projection-based global coordinate sys-
tem that uses Cartesian coordinates in metric units to provide location information.
The experimental dimensions used in this section have been normalized for ease of
calculation and representation. s1 is the starting point for the robot, and s20 is the
final location. Next, the RMCTS planner is called to get the next sampling location,
sg. With M = 20 children in the children set, the robot can move to all other sample
locations from each sample location. Before choosing the next action, the MCTS tree
adds 1000 nodes in each run.

Once the sg has been computed, we use nav2-simple-commander package, Basic-
Navigator, to navigate the robot to the designated location. The navigator method
followWaypoints(poses) is used to requests the robot to follow a set of waypoints.
Alternatively, we can use the goToPose(pose) navigator which drives the robot to the
designated point. The followWaypoints(poses) navigator receives a list of waypoints,
which in our case consists of one location, sg. PoseStamped is the pose ROS2 message
with reference coordinate frame and timestamp. In our case we choose the utm as
coordinate frame.

A synthetic mixture of GPs was used throughout the experiment to model the
scalar field. Figure 6.8 shows the posterior mean of the GP used to model the sensory
reading. In the beginning, the robot has no knowledge of the prior, that is, it does
not have access to the GP mean and standard deviation. As the robot moves through

CHAPTER 6. REAL WORLD EXPERIMENTS 71

Figure 6.5: Top view of the pistachio orchard with sensor placement

the environment, it reads modeled sensory readings at each sample point and its GP
model is updated based on new reading. Since there are no obstacles along the way,
the travel cost of the robot is approximated by Equation 4.3. As the robot can move
freely between each sample point, Euclidean distance is used here.

Figure 6.9 (a) and (b) show the reconstructed spatial field with visited sample
locations with budget 5 and 7. Figure 6.10 show the reconstructed spatial field and
visited sample points with B=10 and B=12. Increasing the budget allows the robot
to explore the environment more and take more samples, resulting in a more accurate
and similar reconstruction to the ground truth shown in Figure 6.8. Figure 6.11 shows
the Husky robot at one of the sample locations in the field.

6.2.2 Pistachio Orchard Results

Figure 6.12 shows the reconstructed underlying field and 50 sample location. In
this experiment, robot starts from location (A1, R1), and (B13, L34) is the final
location. The mean and standard deviation of the GP are unknown to the robot at
the beginning of the experiment. As the robot moves through the environment, it
reads the modeled sensory readings at each sample point and its GP is updated based
on new reading.

Since all sample locations are represented in Cartesian coordinates, we do not
need to change the coordination system. With M = 20 children in the children set,
the robot can move to all other sample locations from each sample location. Before
choosing the next action, the MCTS tree adds 1000 nodes in each run. Despite the
fact that the robot requires path-planning algorithm to find the obstacle-free path to
the designated point, the travel cost of the robot is approximated by Equation 4.3

CHAPTER 6. REAL WORLD EXPERIMENTS 72

Figure 6.6: Robot moving autonomously at pistachio orchard.

with Euclidean distance. Rather than using a real robot, these experiments were
conducted in simulation.

Figure 6.13, Figure 6.14 and Figure 6.15 show the reconstructed spatial field and
visited sample locations with budget 100, 300, and 500. Increasing the budget allows
the robot to perform a deeper exploration and collect more samples, resulting in a
more accurate and similar reconstruction to the ground truth shown in Figure 6.12.

6.3 Conclusions

The purpose of this chapter was to implement RMCTS proposed method on the
Husky robot in the field. In this chapter, we discussed the challenges we faced when
implementing simulated code on a real robot. In our experiments, we demonstrated
that the proposed method is feasible in real-life situations.

CHAPTER 6. REAL WORLD EXPERIMENTS 73

Figure 6.7: Husky robot at Carol Tomlinson-Keasey Quad.

Figure 6.8: Posterior mean used as a sensory reading.

CHAPTER 6. REAL WORLD EXPERIMENTS 74

(a) B=5 (b) B=7

Figure 6.9: Reconstructed spatial field and visited sample points with B=5 and B=7.

(a) B=10
(b) B=12

Figure 6.10: Reconstructed spatial field and visited sample points with B=10 and
B=12.

CHAPTER 6. REAL WORLD EXPERIMENTS 75

Figure 6.11: The Husky robot at one of the sample locations in the field.

Figure 6.12: Reconstructed spatial field and all 50 sample points.

CHAPTER 6. REAL WORLD EXPERIMENTS 76

Figure 6.13: Reconstructed spatial field and visited sample points with B=100.

Figure 6.14: Reconstructed spatial field and visited sample points with B=300.

CHAPTER 6. REAL WORLD EXPERIMENTS 77

Figure 6.15: Reconstructed spatial field and visited sample points with B=500.

Chapter 7

Final Thoughts

7.1 Conclusions

Throughout this dissertation, the single robot and multi robot informative path
planning (IPP) are discussed. A multi-robot IPP method aims to select paths and
sequence of sampling locations for each robot that maximize the quality of the re-
constructed scalar field while do not exceed the travel budget. In Chapter 1, the
motivation of the study is given, which involves using robots to learn a map of the
environment, specifically in agriculture for adjusting water use. Managing a robot
within an agricultural field poses a number of challenges, and these challenges are
highly specific to the environment, which was framed as a stochastic environment
with obstacles. An overview of each of the problems discussed throughout the thesis
are given in Chapter 2.

Chapter 3 discusses the Q-Learning based solution. The offline proposed method
involves two algorithms; the first algorithm determines the next sample location based
on the consumed energy, remaining budget and mutual information criteria as a
reward, and then a second loop finds the best obstacle free path using the RRT
algorithm to visit the designated sample location.

Chapter 4 proposes an online sampling algorithm based on the MCTS algorithm.
It is assumed that the current location of the robot is the root node of the MCTS
tree. MCTS expands the tree by adding some nodes to the tree. After the tree has
been built, the next sampling location is selected based on the UCT formula. Every
time a sample location is measured, the GP model of the scalar field is updated and
used to generate a new set of random sample locations. The proposed approach is
online and it does not require prior knowledge of the environment distribution.

In Chapter 5, the IPP problem is extended to multi-agent scenario focusing on
avoiding collisions, revisiting the same locations while managing budgets. Using
the MCTS algorithm, we propose different versions of online distributed multi-robot
sampling methods that scales with the number of robots in the team. The robots
share their past experiences (visited sampling locations), and each robot estimates the
next movement and decision of other robots in order to minimize revisiting locations.
Each time a sample location is measured, the GP model of the scalar field is updated.
We propose methods that are more accurate, fails less frequently, and has a lower
remaining budget than baseline methods. Also, our proposed methods do not require
prior knowledge of the environment distribution.

78

CHAPTER 7. FINAL THOUGHTS 79

Chapter 6 evaluates and verifies a single robot MCTS method on a real robot to
verify the proposed method feasibility and performance.

7.2 Future Work

In the context of environmental map learning, task planning algorithms for robots
require further development. The algorithms presented in this dissertation are only
useful with some assumptions that may not be true in practice. This assumption
should be challenged in the future so that the algorithms become more practical and
achieve better results than they have thus far.

7.2.1 Improving Cost Model

The proposed models are often built on plots of land that are not flat, resulting
in non-uniform costs between two locations and possibly different costs depending on
the direction of travel. It is also possible that the route between two locations is not
straight. Depending on the robot’s age, payload, and battery level, the travel cost
can also vary. The travel cost needs to be computed using a new method that takes
into account all of these assumptions.

7.2.2 Further Experiments in the Field with Multiple Robots

A real robot was used in this thesis to evaluate and verify the feasibility and
performance of the MCTS method. Different scenarios are examined on the Husky
platform, as well as two different locations to verify the algorithm’s performance. The
multi-robot MCTS should be tested in real-world situations with a team of robots.
The communication between robots is a crucial aspect that must be considered.

7.2.3 Non-homogeneous Agents

Another assumption made throughout this thesis by the algorithms solving the
IPP problem is that all of the agents are exactly the same. That is, they all have
the same sensors and moving constraint. It is possible that the agents cooperating
together are heterogeneous; there may be a variety of robots that move at different
speeds and have different sensors. Due to this, rewards and costs would differ de-
pending on the agent, requiring agents to coordinate and plan in accordance with
their abilities. In order for non-homogeneous agents to work together, some changes
must be made to the algorithms.

7.2.4 Approximation Methods

In many practical cases, the state space (number of sample locations in fields) and
the action space (in our case number of sample locations in fields) are enormous. In

CHAPTER 7. FINAL THOUGHTS 80

that case, finding the optimal policy is not possible, so the goal instead would be to
find a proper approximate solution using limited computational resources.

Deep feedforward networks are one of the most widely used deep learning models.
The goal of a feedforward network is to approximate some function. In this case,
with parametric approximation of the action-value function q(s, a, w) where w is a
finite-dimensional weight vector and the network learns the value of the parameters
w that result in the best function approximation. One possible future work would
be developing a method to approximate the action-value function, q(s, a, w), that is
represented as a parameterized functional form with weight vector w.

Bibliography

[1] Bno08x imu data sheet. Available at https://www.ceva-ip.com/wp-content/
uploads/2019/10/BNO080_085-Datasheet.pdf (2024/07/15).

[2] HUSKY, unmanned ground vehicle. Available at https://

clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

(2024/07/15).

[3] NASA Chlorophyll concentration data-set. Available at https://neo.gsfc.

nasa.gov/view.php?datasetId=MY1DMM_CHLORA (2024/07/15).

[4] Real-time kinematic positioning (rtk). Available at https://en.wikipedia.

org/wiki/Real-time_kinematic_positioning (2024/07/15).

[5] A. S. Aguiar, F. N. Dos Santos, J. B. Cunha, H. Sobreira, and A. J. Sousa.
Localization and mapping for robots in agriculture and forestry: A survey.
Robotics, 9(4):97, 2020.

[6] E. Altman. Constrained Markov decision processes. Routledge, 2021.

[7] Sh. Bai, J. Wang, F. Chen, and B. Englot. Information-theoretic exploration
with bayesian optimization. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1816–1822. IEEE, 2016.

[8] D. Bertsekas. Rollout, policy iteration, and distributed reinforcement learning.
Athena Scientific, 2021.

[9] G. Best, O. M Cliff, T. Patten, R. R. Mettu, and R. Fitch. Dec-mcts: Decen-
tralized planning for multi-robot active perception. The International Journal
of Robotics Research, 38(2-3):316–337, 2019.

[10] J. Binney, A. Krause, and G. S. Sukhatme. Optimizing waypoints for monitoring
spatiotemporal phenomena. The International Journal of Robotics Research,
32(8):873–888, 2013.

[11] A. Blanchard and Th. Sapsis. Informative path planning for anomaly detection
in environment exploration and monitoring. Ocean Engineering, 243:110242,
2022.

[12] D. Bochtis, L. Benos, M. Lampridi, V. Marinoudi, S. Pearson, and C.G.
Sørensen. Agricultural workforce crisis in light of the covid-19 pandemic. Sus-
tainability, 12(19), 2020.

81

https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf
https://www.ceva-ip.com/wp-content/uploads/2019/10/BNO080_085-Datasheet.pdf
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://neo.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA
https://neo.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning
https://en.wikipedia.org/wiki/Real-time_kinematic_positioning

BIBLIOGRAPHY 82

[13] L. Booth and S. Carpin. Distributed estimation of scalar fields with implicit
coordination. In J. Bourgeois et al., editor, Distributed Autonomous Robotic
Systems 16., pages 466–478. Springer, 2024.

[14] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, Ph.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1):1–43, 2012.

[15] J. A. Caley and G. A. Hollinger. Data-driven comparison of spatio-temporal
monitoring techniques. In OCEANS 2015-MTS/IEEE Washington, pages 1–7.
IEEE, 2015.

[16] M. Campbell, A. Dechemi, and K. Karydis. An integrated actuation-perception
framework for robotic leaf retrieval: Detection, localization, and cutting. In
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 9210–9216. IEEE, 2022.

[17] S. Carpin and T. C. Thayer. Solving stochastic orienteering problems with
chance constraints using monte carlo tree search. In 2022 IEEE 18th Inter-
national Conference on Automation Science and Engineering (CASE), pages
1170–1177. IEEE, 2022.

[18] S. Cerrato. Gps-based autonomous navigation of unmanned ground vehicles in
precision agriculture applications. PhD thesis, Politecnico di Torino, 2020.

[19] W. Chen and L. Liu. Pareto monte carlo tree search for multi-objective infor-
mative planning. arXiv preprint arXiv:2111.01825, 2021.

[20] R. Cui, Y. Li, and W. Yan. Mutual information-based multi-auv path planning
for scalar field sampling using multidimensional rrt. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 46(7):993–1004, 2015.

[21] J. Das, J. Harvey, F. Py, H. Vathsangam, R. Graham, K. Rajan, and G. S.
Sukhatme. Hierarchical probabilistic regression for auv-based adaptive sampling
of marine phenomena. In 2013 IEEE International Conference on Robotics and
Automation, pages 5571–5578. IEEE, 2013.

[22] A. Dechemi, D. Chatziparaschis, J. Chen, M. Campbell, A. Shamshirgaran,
C. Mucchiani, A. Roy-Chowdhury, S. Carpin, and K. Karydis. Robotic assess-
ment of a crop’s need for watering. IEEE Robotics and Automation Magazine,
30(4):52 – 67, 2023.

[23] G. A. Di Caro and A. W. Ziaullah Yousaf. Map learning via adaptive region-
based sampling in multi-robot systems. In Distributed Autonomous Robotic
Systems: 15th International Symposium, pages 335–348. Springer, 2022.

BIBLIOGRAPHY 83

[24] A. Dutta, Patrick K., and J. M. O’Kane. Opportunistic multi-robot environ-
mental sampling via decentralized markov decision processes. In Distributed
Autonomous Robotic Systems: 15th International Symposium, pages 163–175.
Springer, 2022.

[25] H.J.S. Finch, A.M. Samuel, and G.P.F. Lane. Precision farming. In Lockhart &
Wiseman’s Crop Husbandry Including Grassland, pages 235 – 244. Woodhead
Publishing, ninth edition edition, 2014.

[26] K. Fowler. Five reasons labor shortages are impacting supply chains. https:

//www.forbes.com, 2021. [Online; accessed 1-Jan.-2023].

[27] J. N. Fuhg, A. Fau, and U. Nackenhorst. State-of-the-art and comparative
review of adaptive sampling methods for kriging. Archives of Computational
Methods in Engineering, 28:2689–2747, 2021.

[28] A. Fulton, J. Grant, R. Buchner, and J. Connell. Using the pressure chamber
for irrigation management in walnut, almond and prune. ANR, 2014.

[29] Y. Ge, F. Zhu, X. Ling, and Q. Liu. Safe q-learning method based on constrained
markov decision processes. IEEE Access, 7:165007–165017, 2019.

[30] D. V. Gealy, S. McKinley, M. Gou, L. Miller, S. Vougioukas, J. Viers, S. Carpin,
and K. Goldberg. Co-robotic device for automated tuning of emitters to enable
precision irrigation. In Proceedings of the IEEE Conference on Automation
Science and Engineering, pages 922–927, 2016.

[31] M. Gh. Jadidi, J. V Miro, and G. Dissanayake. Sampling-based incremental
information gathering with applications to robotic exploration and environmen-
tal monitoring. The International Journal of Robotics Research, 38(6):658–685,
2019.

[32] G. Gil, D. Emilio Casagrande, L. P. Cortés, and R. Verschae. Why the low adop-
tion of robotics in the farms? challenges for the establishment of commercial
agricultural robots. Smart Agricultural Technology, 3:100069, 2023.

[33] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements
in gaussian processes. In Proceedings of the 22nd international conference on
Machine learning, pages 265–272, 2005.

[34] G. A. Hollinger and G. S. Sukhatme. Sampling-based robotic information gath-
ering algorithms. The International Journal of Robotics Research, 33(9):1271–
1287, 2014.

[35] D. Jang, J. Yoo, C. Y. Son, and H. J. Kim. Fully distributed informative
planning for environmental learning with multi-robot systems. arXiv preprint
arXiv:2112.14433, 2021.

https://www.forbes.com
https://www.forbes.com

BIBLIOGRAPHY 84

[36] J.R. Jankowski. Consumptive Water Use in California’s Sacramento-San
Joaquin Delta: A Comparison of Estimation Methods and Field Data, with
Implications for Water Right Diversion Reporting. University of California,
Davis, 2018.

[37] G. Kalweit, M. Huegle, M. Werling, and J. Boedecker. Deep constrained q-
learning. arXiv e-prints, pages arXiv–2003, 2020.

[38] X. Kan, H. Teng, and K. Karydis. Multi-robot field exploration in hex-
decomposed environments for dubins vehicles. In Proceedings of the IEEE In-
ternational Conference on Robotics and Biomimetics (ROBIO), pages 449–455,
2019.

[39] X. Kan, H. Teng, and K. Karydis. Online exploration and coverage planning
in unknown obstacle-cluttered environments. IEEE Robotics and Automation
Letters, 5(4):5969–5976, 2020.

[40] X. Kan, T. Thayer, S. Carpin, and K. Karydis. Task planning on stochastic
aisle graphs for precision agriculture. IEEE Robotics and Automation Letters,
6(2):3287 – 3294, 2021.

[41] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[42] S. Kemna, S. Kangaslahti, O. Kroemer, and G. S Sukhatme. Adaptive sampling:
Algorithmic vs. human waypoint selection. arXiv preprint arXiv:2104.11962,
2021.

[43] S. Kemna, J. G Rogers, C. Nieto-Granda, S. Young, and G. S. Sukhatme.
Multi-robot coordination through dynamic voronoi partitioning for informative
adaptive sampling in communication-constrained environments. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 2124–
2130. IEEE, 2017.

[44] B. Khamidehi and E. S. Sousa. A double q-learning approach for navigation of
aerial vehicles with connectivity constraint. In ICC 2020-2020 IEEE Interna-
tional Conference on Communications (ICC), pages 1–6. IEEE, 2020.

[45] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006.

[46] G. P. Kontoudis and D. J. Stilwell. Fully decentralized, scalable gaussian pro-
cesses for multi-agent federated learning. arXiv preprint arXiv:2203.02865,
2022.

[47] A. Krause and C. Guestrin. Submodularity and its applications in optimized in-
formation gathering. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(4):1–20, 2011.

BIBLIOGRAPHY 85

[48] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor
placements: Maximizing information while minimizing communication cost. In
Proceedings of the 5th international conference on Information processing in
sensor networks, pages 2–10, 2006.

[49] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in
gaussian processes: Theory, efficient algorithms and empirical studies. Journal
of Machine Learning Research, 9(2), 2008.

[50] S. M LaValle and J. Kuffner Jr. Randomized kinodynamic planning. The
international journal of robotics research, 20(5):378–400, 2001.

[51] S. Macenski, F. Mart́ın, R. White, and J. G. Clavero. The marathon 2: A
navigation system. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2718–2725. IEEE, 2020.

[52] S. Manjanna, M. A. Hsieh, and G. Dudek. Scalable multirobot planning for
informed spatial sampling. Autonomous Robots, 46(7):817–829, 2022.

[53] S. Manjanna, H. van Hoof, and G. Dudek. Reinforcement learning with non-
uniform state representations for adaptive search. In 2018 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 1–7. IEEE,
2018.

[54] A. Marino, G. Antonelli, A. P. Aguiar, A. Pascoal, and S. Chiaverini. A decen-
tralized strategy for multirobot sampling/patrolling: Theory and experiments.
IEEE Transactions on Control Systems Technology, 23(1):313–322, 2014.

[55] M. Meron, D. Grimes, C. Phene, and K. Davis. Pressure chamber procedures
for leaf water potential measurements of cotton. Irrigation science, 8:215–222,
1987.

[56] M. Mortazavi, R. Ehsani, S. Carpin, and A. Toudeshki. Predicting tree water
status in pistachio and almond orchards using supervised machine learning.
Available at SSRN 4511076, 2024.

[57] MA. Oliver and R. Webster. A tutorial guide to geostatistics: Computing and
modelling variograms and kriging. Catena, 113:56–69, 2014.

[58] J. Orr and A. Dutta. Multi-agent deep reinforcement learning for multi-robot
applications: A survey. Sensors, 23(7):3625, 2023.

[59] A. Owen-Hill. Top 10 robotic applications in the agricultural industry. https:
//www.blog.robotiq.com, 2022. [Online; accessed 1-Jan.-2023].

[60] L. Pan, S. Manjanna, and M. A. Hsieh. Marlas: Multi agent reinforcement
learning for cooperated adaptive sampling. arXiv preprint arXiv:2207.07751,
2022.

https://www.blog.robotiq.com
https://www.blog.robotiq.com

BIBLIOGRAPHY 86

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[62] M. Popović, G. Hitz, J. Nieto, I. Sa, R. Siegwart, and E. Galceran. Online
informative path planning for active classification using uavs. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 5753–5758.
IEEE, 2017.

[63] M. Popović, T. Vidal-Calleja, G. Hitz, J. J Chung, I. Sa, R. Siegwart, and J. Ni-
eto. An informative path planning framework for uav-based terrain monitoring.
Autonomous Robots, 44(6):889–911, 2020.

[64] C. E. Rasmussen. Gaussian processes in machine learning. In Summer school
on machine learning, pages 63–71. Springer, 2003.

[65] C. M. Rodriguez-Dominguez, A. Forner, S. Martorell, et al. Leaf water potential
measurements using the pressure chamber: Synthetic testing of assumptions
towards best practices for precision and accuracy. Plant, Cell & Environment,
45(7):2037–2061, 2022.

[66] R. Romero, JL. Muriel, I. Garćıa, and D. Muñoz de la Peña. Research on
automatic irrigation control: State of the art and recent results. Agricultural
water management, 114:59–66, 2012.

[67] J. Rückin, L. Jin, and M. Popović. Adaptive informative path planning using
deep reinforcement learning for uav-based active sensing. In 2022 International
Conference on Robotics and Automation (ICRA), pages 4473–4479. IEEE, 2022.

[68] E. Sani, A. Sgorbissa, and S. Carpin. Improving the ros 2 navigation stack with
real-time local costmap updates for agricultural applications. In Proceedings
of the IEEE International Conference on Robotics and Automation, 2024 (to
appear).

[69] L. C. Santos, F. N. Santos, EJ. S. Pires, A. Valente, P. Costa, and S. Mag-
alhães. Path planning for ground robots in agriculture: A short review. In 2020
IEEE International Conference on Autonomous Robot Systems and Competi-
tions (ICARSC), pages 61–66. IEEE, 2020.

[70] G. D. Schaible and M. P. Aillery. Water conservation in irrigated agriculture:
Trends and challenges in the face of emerging demands. Technical Report EIB-
99, U.S. Department of Agriculture, Economic Research Service, September
2012.

BIBLIOGRAPHY 87

[71] P. F. Scholander, H. T. Hammel, E. A. Hemmingsen, and E. D. Bradstreet.
Hydrostatic pressure and osmotic potential in leaves of mangroves and some
other plants. Proceedings of the National Academy of Sciences of the United
States of America, 52(1):119, 1964.

[72] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on gaussian process
regression: Modelling, exploring, and exploiting functions. Journal of Mathe-
matical Psychology, 85:1–16, 2018.

[73] B. Sean, L. Bartolomei, F. Kennel-Maushart, and M. Chli. Decentralised
multi-robot exploration using monte carlo tree search. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robotis and Systems, pages
7354–7361, 2023.

[74] A. Shamshirgaran and S. Carpin. Reconstructing a spatial field with an au-
tonomous robot under a budget constraint. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8963–8970, 2022.

[75] A. Shamshirgaran and S. Carpin. Environmental map learning with multi-
robots. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2025 (to be Submitted).

[76] A. Shamshirgaran, S. Manjanna, and S. Carpin. Distributed multi-robot online
sampling with budget constraints. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 12658–12664, 2024.

[77] M. Shekaramiz, T. K. Moon, and J. H. Gunther. A note on kriging and gaussian
processes. 2019.

[78] R. Shrivastava. Seso wants to help solve a 3.1 billion farm labor crisis through
automation. https://www.forbes.com, 2021. [Online; accessed 1-Jan.-2023].

[79] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin. Efficient planning
of informative paths for multiple robots. In Proceedings of the 20th international
joint conference on Artifical intelligence, pages 2204–2211, 2007.

[80] A. Sipahioglu, G. Kirlik, O. Parlaktuna, and A. Yazici. Energy constrained
multi-robot sensor-based coverage path planning using capacitated arc routing
approach. Robotics and Autonomous Systems, 58(5):529–538, 2010.

[81] M. L. Stein. Interpolation of Spatial Data – Some Theory for Kriging. Springer,
1999.

[82] M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media, 1999.

https://www.forbes.com

BIBLIOGRAPHY 88

[83] J. S. P. Sundaram, W. Du, and Zh. Zhiwei. A survey on lora networking:
Research problems, current solutions, and open issues. IEEE Communications
Surveys & Tutorials, 22(1):371–388, 2019.

[84] V. Suryan and P. Tokekar. Learning a spatial field in minimum time with a
team of robots. IEEE Transactions on Robotics, 36(5):1562–1576, 2020.

[85] V. Suryan and P. Tokekar. Efficiently identifying hotspots in a spatially varying
field with multiple robots. arXiv preprint arXiv:2309.07981, 2023.

[86] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[87] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

[88] Y. T. Tan, A. Kunapareddy, and M. Kobilarov. Gaussian process adaptive
sampling using the cross-entropy method for environmental sensing and mon-
itoring. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 6220–6227. IEEE, 2018.

[89] T. Thayer and S. Carpin. An adaptive method for the stochastic orienteering
problem. IEEE Robotics and Automation Letters, 6(2):4185–4192, 2021.

[90] T. Thayer and S. Carpin. A fast algorithm for stochastic orienteering with
chance constraints. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2021 (to appear).

[91] T. Thayer and S. Carpin. A resolution adaptive algorithm for the stochastic
orienteering problem with chance constraints. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2021 (to appear).

[92] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Routing algorithms
for robot assisted precision irrigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 2221–2228, 2018.

[93] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Multi-robot routing
algorithms for robots operating in vineyards. IEEE Transactions on Automation
Science and Engineering, 17(3):1184–1194, 2020.

[94] T. C Thayer, S. Vougioukas, K. Goldberg, and S. Carpin. Multi-robot rout-
ing algorithms for robots operating in vineyards. In 2018 IEEE 14th Inter-
national Conference on Automation Science and Engineering (CASE), pages
14–21. IEEE, 2018.

BIBLIOGRAPHY 89

[95] P. Tokekar, V. J. Hook, D. Mulla, and V. Isler. Sensor planning for a symbiotic
uav and ugv system for precision agriculture. IEEE transactions on robotics,
32(6):1498–1511, 2016.

[96] T. Tsiligiridis. Heuristic methods applied to orienteering. Journal of the Oper-
ational Research Society, 35:797–809, 09 1984.

[97] G. Vellidis, V. Liakos, W. Porter, M. Tucker, and X. Liang. A dynamic variable
rate irrigation control system. In Proceedings of the International Conference
on Precision Agriculture, volume 13, pages 1–9, 2016.

[98] H Vila, I Hugalde, and M Di Filippo. Estimation of leaf water potential by
thermographic and spectral measurements in grapevine. RIA: Revista de In-
vestigaciones Agropecuarias, 37:46–52, 2011.

[99] S. Vougioukas. Agricultural robotics. Annual review of control, robotics, and
autonomous systems, 2:339–364, 2019.

[100] J.S. Wallace and P.J. Gregory. Water resources and their use in food production
systems. Aquatic Sciences, 64:363–375, 2002.

[101] Y. Wei and R. Zheng. Informative path planning for mobile sensing with rein-
forcement learning. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 864–873. IEEE, 2020.

[102] Ch. KIWilliams and C. E. Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[103] Z. Yan, N. Jouandeau, and A. A. Cherif. A survey and analysis of multi-robot
coordination. International Journal of Advanced Robotic Systems, 10(12):399,
2013.

[104] Q. Zaman. Precision Agriculture: Evolution, Insights and Emerging Trends.
Elsevier, 2023.

[105] T. Zhao, B. Stark, Y. Chen, A.L. Ray, and D. Doll. Challenges in water stress
quantification using small unmanned aerial system (suas): Lessons from a grow-
ing season of almond. Journal of Intelligent & Robotic Systems, 88(2):721–735,
2017.

	Introduction
	Purpose
	Overview of Contributions

	Related Work
	Robots Application in Agriculture
	Kriging and Gaussian Process Model
	Single-Robot Informative Path Planning
	Single-Robot IPP and Learning Based Methods
	Single-Robot IPP and Other Methods

	Multi-Robot Informative Path Planning
	Multi-Robot IPP and Learning Based Methods
	Multi-Robot IPP and Other Methods

	Single-Robot IPP, Q-Learning Solution
	Informative Path Planning
	Q-learning based Solution
	Markov Decision Process
	Q-Learning
	Reward Function
	Proposed Algorithm

	Results and Discussion
	Methods
	Metrics
	Results

	Conclusions

	Single-Robot IPP, MCTS Solution
	MCTS based Algorithms
	Monte Carlo tree search (MCTS)
	All Grid MCTS Algorithm (All-MCTS)
	Sample Location MCTS Algorithm (RMCTS)

	MCTS based Algorithms Results and Discussion
	Methods
	Data Sets
	Metrics
	SYNT1 Results and Discussion
	CAL-SOIL Results and Discussion
	NASA1 and NASA2 Results and Discussion

	Conclusions

	Multi-Robot IPP
	Multi-Robot Informative Path Planning
	MCTS based Algorithms
	MR-RMCTS
	MR-PMCTS
	MR-All-MCTS

	Results and Discussion
	Synthetic Dataset (SYNT1) Results
	California Central Valley Soil Moisture Dataset (CAL-SOIL) Experiment I Results
	California Central Valley Soil Moisture Dataset (CAL-SOIL) Experiment II Results
	NASA Chlorophyll Concentration Dataset (NASA3) Results

	Conclusions

	Real World Experiments
	Experiment Setup
	Platform
	Method
	Field Test Locations

	Results and Discussion
	Carol Tomlinson-Keasey Quad Results
	Pistachio Orchard Results

	Conclusions

	Final Thoughts
	Conclusions
	Future Work
	Improving Cost Model
	Further Experiments in the Field with Multiple Robots
	Non-homogeneous Agents
	Approximation Methods

	Bibliography

