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Abstract. Advances in the field of robotic simulations in general and
the complexity of virtual outdoor environments in particular have cre-
ated a demand for accurate simulated open-air localization devices. In
this paper, we answer this request by presenting the implementation of a
simulated Global Positioning System receiver for the popular USARSim
platform. The engineering tradeoff of speed versus accuracy is encoun-
tered throughout the design process and discussed comprehensively in
the paper. Along the lines of a validation methodology we developed in
recent years, the simulated sensor is implemented and extensively ana-
lyzed in a real/simulated scenario, where data logged from a real robot
is evaluated against the data acquired in simulation.

1 Introduction

With the continuously growing focus on multi-robot cooperation and improve-
ments in computer hardware, algorithmic techniques, and computer animation,
robotic simulators are gaining momentum within the robotics community. In-
deed, robotic simulators are now capable of simulating multiple blocks of an
outdoor urban environment, comprised of a multitude of robots, victims, fires,
collapsed structures, rivers, bridges, and more [1]. The typical assortment of
sensors for robots operating in similar real world environments more and more
often includes a Global Positioning System (GPS) receiver in order to ease the
localization task. Henceforth, in order to create a faithful simulation environ-
ment, we designed a simulated GPS sensor that is, to the best of our knowledge,
the first of its kind in comparable simulation systems. In fact, our goal is not to
merely convert Cartesian coordinates into latitude and longitude components,
but rather produce a realistic sensor that exhibits the same properties of current
GPS receivers.

Even though the paper’s aim is to provide a standard methodology for the
construction of a simulated GPS sensor for outdoor robotic applications, we im-
plemented our framework inside the Unified System for Automation and Robot
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Simulation (USARSim)1. USARSim has become a popular real-time three di-
mensional simulator thanks to widespread validation effort from the community
[2][3][4] and its utilization in the yearly RoboCup Rescue Simulation League
[5][6]. USARSim is an open-source extension to the Unreal Tournament (UT)
game engine that, consequently, only requires a modestly priced UT license. The
game engine takes care of rendering scenes and computing physics while Unre-
alScript, an object-oriented programming language similar to C++, allows for
the addition and modification of actors (e.g. robots, actuators, sensors) in the
simulation. Since the sensor’s implementation will exclusively be performed in
UnrealScript, it is important to keep some of its drawbacks in mind; namely its
slow computational speed and lack of floating point number precision.

This paper builds upon a validation methodology we developed for USAR-
Sim in the past and that has proved to be highly effective in order to close the
loop between simulation and reality. In short, our approach consists in perform-
ing the same experiment in simulation and with the real world system, and to
quantitatively compare the results. This effort may sometimes be costly, because
it entails developing accurate models of the robotic systems at hand, but it has
proved to be a formidable tool in order to assess which conclusions can be extrap-
olated from simulation to reality and which ones do not generalize. Part of the
USARSim success draws from the abundance of these validation efforts, and this
paper, besides illustrating the technical details of GPS simulation, can be read
as a working example of the robot simulators validation process we advocate.

2 Methodology and Implementation

2.1 Satellite Tracking

Since a real GPS module receives signals from satellites, the first cornerstone
to simulate a GPS receiver is to establish a relationship between the GPS sen-
sor and the orbiting satellites. The most realistic method to establish this re-
lationship is by tracking GPS satellites. The three governing North American
aerospace institutions, namely the National Aeronautics and Space Administra-
tion (NASA), the North American Aerospace Defense Command (NORAD), and
the Air Force Space Command (AFSPC), collectively promote the usage of the
Simplified General Perturbations Satellite Orbit Model 4 (SGP4) for satellite
tracking, the details of which are found in [7]. In fact, the SGP4 algorithm has
gained a strong reputation among amateurs and professionals and quickly be-
came the standard satellite tracking model, resulting in sustained research and
constant improvements [8][9].

While the details of SGP4, which can be found in the referenced publications,
are beyond the scope of this paper, we will provide a very brief and high-level
1 This system was formerly known as Urban Search and Rescue Simulator. The name

change reflects the much broader applicability it gained through the years.
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Fig. 1. Sample TLE File with Format Descriptions (modified from [10])

description of the orbital model. The algorithm takes as input a NASA/NORAD
Two-Line Element (TLE) [10], a date, and a time and outputs the location of
the satellite defined by the TLE at the given date and time. Real-time satellite
tracking can consequently be achieved by continuously running SGP4 with the
current date and time. The TLE format, a sample of which is given in Figure 1,
provides the orbital information necessary to reconstruct the orbit of a satellite
(see Figure 2) that can then be used to approximate the satellite’s location. The
SGP4 algorithm parses the TLE data and calculates the satellite’s orbital state
vectors, the result of which is usually expressed as latitude, longitude, and alti-
tude components. Manifestly, the precision of SGP4 is strongly correlated to the
accuracy of the TLE data. To that effect, the AFSPC publishes and maintains a
database of TLE files available to approved users on the space track website [11].

Even though there already exists a plethora of satellite trackers implemented
with SGP4, available both as online visualization tools [12][13] and compre-
hensive software suites [14][15][16], we constrained our search to user-friendly,
reusable, open-source, and lightweight systems since we were, originally, looking
to port the code to UnrealScript. After experimenting with a multitude of im-
plementations and choosing GLSat [17], we realized that translating the code to
UnrealScript was impossible due to poor floating point precision. Indeed, the UT
engine is only capable of keeping track of seven decimal places, rendering live
satellite tracking inaccurate. In addition, the amount of time spent calculating
satellite positions took too much time away from other simulated components.

We circumvented the aforementioned problem by switching to an offline ap-
proach for satellite tracking. More specifically, we modified the GLSat program
to take in the following parameters: a TLE file comprised of one or more satellite,
a date, a time, and the amount of time during which satellite positions should
be tracked. The program then computes all the satellite positions, starting from
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Fig. 2. Reconstructing a Satellite Orbit from a TLE-File

the given date and time, over the time interval with a pre-defined time step, and
creates a configuration file that can be read by UnrealScript. The configuration
file is then read-in and stored in appropriate data structures when the simulation
starts, effectively yielding a lookup table of satellite positions, based on time.
Even though this method requires greater user interaction and does not reflect
real satellite positions for large time steps, it alleviates computational burden -
a primordial aspect of robotic simulations. It is worthwhile noting that this ap-
proach allows flexible researchers to use any configuration file (for applications
where it does not matter if satellite positions do not reflect the current date and
time), while more stringent researchers can go through the process of generating
their own configuration files (for applications requiring the proper satellite posi-
tions for a given time interval). The reader should observe that in order to render
faithful simulation, the system we have developed does not perform a generic
simulation of a GPS, but rather offers the possibility to locate the simulation in
time, i.e. it extracts the position of the GPS satellites at a given point in time.
In this way the correlation between simulation and real world systems becomes
more binding.

2.2 Signal and Noise Model

With the simulation now capable of determining the satellites’ location, we in-
troduce signal and noise models. Real GPS receiver precision depends on the
number of satellite signals received by the unit (i.e. the more satellites seen by
the receiver, the better the accuracy of the location) as well as the geometric
arrangement of the satellites (i.e. the dilution of precision) [18]. For the purpose
of this paper and due to the additional computational burden of integrating di-
lution of precision calculations, we solely base our noise model on the number
of satellite signals received by the GPS receiver. Consequently, the first step in
our model is to determine the number of satellites observed by the simulated



5

GPS sensor; a two-step process. First, the angle of elevation between the current
sensor location and each satellite position is calculated. Any satellite yielding an
elevation angle less than five degrees is discarded. The process eliminates all the
satellites that would require sending a signal through the earth’s surface (i.e.
negative elevations) as well as the satellites that are too low to consider (i.e.
elevations between zero and five degrees). Eliminating satellites based on their
elevation, through a set of straightforward equations, is of foremost importance
to guarantee that the next elimination process is computationally friendly. Sec-
ond, ray tracing is performed from the GPS receiver to each of the satellites’
location to further eliminate some of the observed satellites. If the ray trace hits
an environment entity (e.g. buildings, vehicles) on its way to a satellite then
that satellite is discarded, otherwise it becomes one of the satellites seen by the
GPS sensor. Ray tracing being a computational burden [19], the first elimina-
tion process assures that it will not be used needlessly. The proposed line-of-sight
signal model provides a very crude approximation, but modeling realistic signal
strength taking into account possible deflections would surely result in an in-
tractable scenario.

As previously discussed, the amount of noise in a GPS sensor measurement
needs to be proportional to the number of satellites available. We, once again,
favor a computationally-friendly modular approach that allows researchers to
effortlessly change the noise function as they see fit. Indeed, the currently im-
plemented noise function, described below, can be swapped by another; thus
allowing improvements or specific noise functions emulating different GPS re-
ceivers. Since experiments have shown GPS noise to have Gaussian distribution
[18], we exploit the Box-Muller method [20] to generate Gaussian-distributed
random numbers. More specifically, we use two configuration variables to dic-
tate the maximum and minimum amount of localization error, in meters, when
four and twelve satellites are available to the sensor, respectively. The reader
shoud note that four is the minimum number of satellites required for a GPS
fix, while twelve is habitually the maximum. The two configuration variables
are especially important for users looking to effortlessly simulate different GPS
receivers without having to change code or recompile the simulation environ-
ment. For example, both Wide Area Augmentation System (WAAS) capable
and WAAS-incapable GPS receivers can be simulated by simply modifying the
parameters.

Mathematically, the two configuration variables give the sensor two points
on a curve with respect to the number of satellites observed. Our noise function
linearly interpolates between those two points to create a function of error, in
slope-intercept form, based on the number of satellites seen. First, the slope,
m, of the linear function is calculated, using the two configuration variables
maxNoise and minNoise as shown:

m =
(

maxNoise − minNoise
4 − 12

)
. (1)
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Then, the y-intercept, b, of the linear function is derived using the slope:

b = maxNoise − (4 ∗m). (2)

Finally, Equation 3 calculates a standard deviation, σ, for the Gaussian num-
ber generator by using the current number of satellite seen by the simulated GPS
sensor. More specifically, the Gaussian random number generator is used with a
mean of zero and a standard deviation of a third of the maximum noise, guar-
anteeing that, in 99.7% of the cases, the error produced will be within plus or
minus of the maximum error.

σ =
(
m ∗ SatelliteSeen + b

3

)
(3)

Even though the proposed method might seem simplistic, it is efficient to
compute and provides very good results, as will be described in the experimental
section of the paper.

2.3 Implementation Details

The satellite tracker, along with the signal and noise models, encompasses the
majority of the simulated GPS methodology but leaves a few open issues. One
of the main dilemmas when using a GPS sensor in virtual environments is the
mapping of a virtual location to a real one. Since many virtual worlds do not
inherently possess latitude and longitude coordinates, we propose and have im-
plemented three different methods to allocate a GPS coordinate to a virtual
world, each with different levels of precedence. First, world developers can add a
specially-created tag when building the virtual environment and modify its prop-
erties to reflect the desired latitude and longitude coordinates. The placement of
the tag will define a reference GPS coordinate that can be used to determine the
latitude and longitude of any point on the map. Second, configuration variables
can be set inside the USARSim initialization file to provide the reference GPS
coordinate of the (0,0) Cartesian coordinate in the virtual world. Third, the GPS
sensor class can be modified to link the (0,0) Cartesian coordinate with a GPS
coordinate. All of these methods solve the same problem and have been added
for user-friendliness and backward compatibility with old virtual environments.

Once the amount of noise, in meters, has been established using the aforemen-
tioned techniques, latitudinal and longitudinal components have to be calculated
and returned by the sensor - calculations that require a couple of assumptions.
The first, aimed at lowering computationally intensive instructions, assumes a
flat earth and, consequently, provides a straightforward translation between dis-
tance and degrees, using the surface distance per degree change conversion. In
other words, under the flat-earth assumption, a one degree change corresponds
to a specific change in distance, allowing conversions from meters to degrees. The
second assumption involves the global coordinate frame of the virtual world. We
assume that all X-axis motion is converted to latitude and that all Y-axis motion
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is converted to longitude. While, in most cases, the global X-axis points to the
North, it is worthwhile noting that this is not always the case due to singularities
that may occur. Indeed, as shown in Figure 3, the sensor handles singularities
that occur at the earth’s poles (at 90 degree North and 90 degree South) and
on the longitude (at 180 degree West and 180 degree East). In other words, and
as an example, driving along the X-axis at 89 degrees and 59.9 minutes will
increase the latitude component of the GPS until 90 degree North is reached.
At that point, the latitude component will decrease (meaning that the global
X-Axis now points to the south). These singularities exist and are taken into
account due to the flat nature of virtual worlds and the spherical shape of the
earth.

Fig. 3. Singularity Representation with Flat-Earth Assumption.

3 Experimental Results

We conducted a set of experiments aimed at validating the simulated GPS sensor
by using a real/virtual testbed similar to [21]. More specifically, we teleoperate
a real P3AT robot, equipped with a Holux M1000 GPS receiver, at various dis-
tances from buildings outside the University of California, Merced quad. During
each run, lasting between two and ten minutes, data comprised of the latitude,
longitude, and number of satellites observed by the receiver is logged to a file.
To facilitate the correspondence between the real and simulated robot motions,
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we limited our experiments to straight paths, thus decreasing time-dependent
mechanical differences between the robots. Once the runs were performed us-
ing the real robot, they were replicated in simulation, in real-time, with the
extensively-utilized USARSim P3AT, equipped with the simulated GPS sensor.
A simplified virtual representation of the UC Merced quad was built to that
effect, only including major landmarks such as buildings and significant ground
slopes. Some of the experimental results are shown in Figure 5, 6, and 7.

Fig. 4. Picture of the real P3AT (left) next to a screenshot of the simulated P3AT
(right) in the experimental environment.

As can be seen from Figure 5, the latitude and longitude components reported
by the simulated sensor are very close to those reported by the real receiver.
The difference between the two paths stem from the noise model parameters
used during the experiment. Indeed, the simulated run used a maximum noise
parameter of three meters (the advertised accuracy of the Holux M1000 GPS
receiver with WAAS enabled), but the real receiver actually produced errors, in
our experiments, of up to eight meters. It is worthwhile mentioning that Run 3
is particularly off at the beginning of the experiment due to a cold start from
the receiver; a typical GPS feature (i.e. they take time to initially localize) that
was not modeled in our simulated GPS.

A plot of the error difference, in degrees, between the real and simulated
GPS coordinates is given in Figure 6 for each of the three runs presented in this
paper. Equation 4, exploited for each time step, gives insight into how the plots
were created. The primary insightful result from Figure 6 is the fact that, for
each of the three runs presented, the error between the simulated GPS sensor
and the Holux M1000 GPS receiver did not surpass 0.00014 degrees, a testament
to the accuracy of the simulated sensor. Furthermore, the error for Run 1 and
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Fig. 5. Plot of GPS latitude and longitude coordinates in Google Earth for three
different runs. Each run is labeled from 1 to 3 and comprised of two paths. The solid
line indicates the path of the real robot whereas the dotted line shows the path of
the simulated robot. Run 1 was performed from North-East to South-West, Run 2 was
performed from South-West to North-East, and Run 3 was performed from North-West
to South-East.

Run 2 varies the most at the beginning and towards the end of the runs. This
behavior is explained by the inertial difference between the real robot and the
simulated one. Indeed, the real robot requires a lot more time to reach a given
speed than its simulated counterpart. The same behavior is observed at the end
of Run 3. The beginning of Run 3 possesses an unusually high error due to the
previously-discussed cold start.

√(
RealLatitude − SimLatitude

)2 +
(

RealLongitude − SimLongitude
)2

(4)

Figure 7 shows, for each run, the number of satellites seen by the real and
simulated GPS receivers. The significant aspect of the data is that the simulated
plot follows, in terms of shape, the real plot. Two additional comments can be
made. First, the simulated sensor sees, in most cases, more satellites than its
real counterpart. Second, the simulated sensor is much more linear and experi-
ences fewer changes in the number of satellites seen. Both of these facts can be
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Fig. 6. Plot of the error, in degrees, between the real and simulated GPS coordinates
for each run presented in Figure 5.

explained by the simplified virtual representation of the environment and the
signal model. Since only major landmarks were included in the virtual world,
small objects (e.g. trees, benches, stairs) interfered with the real receiver but not
the simulated one. Additionally, the line-of-sight signal model does not take into
account signal reflections, i.e. the reason for the oscillating number of satellites
seen by the real receiver.

4 Conclusion and Future Work

In this paper, we presented a complete methodology supporting the creation
of a simulated GPS sensor, supplemented by a USARSim implementation and
experimental results comparing real and simulated data. The simulated results
are close to the real receiver, especially when taking into account the assump-
tions made and the focus on computation friendliness over accuracy. In fact,
the USARSim GPS sensor was selected and used in the 2008 RoboCup Rescue
Simulation League in July 2008, where its robustness was successfully put to
the test in a highly competitive scenario. Moreover, a DARPA Urban Challenge
team has expressed the desire to use the sensor along with USARSim.

A few research opportunities stem from this work both in terms of improve-
ments and extensions. Some improvements can be made within the noise and
signal models, provided that they are not too demanding for the engine. More
specifically, a great improvement would be to incorporate the dilution of preci-
sion as part of the noise model. In addition, getting real-time satellite tracking
working, perhaps through the use of C++ dynamic library, would create a bet-
ter all-in-one solution. Alternatively, porting the implementation to a different
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simulator, such as the new Microsoft Robotics Studio Simulator, could allow for
more rigorous noise and signal models and the integration of real-time satellite
tracking.

Fig. 7. Plot of the number of satellites seen as a function of time for each run. The
runs correspond to the ones presented in Figure 5.
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