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Abstract  
From a theoretical perspective, one may easily argue (as we will in this chapter) 
that simulation accelerates the algorithm development cycle. However, in practice 
many in the robotics development community share the sentiment that “Simula-
tion is doomed to succeed” [Brooks] p. 209. This comes in large part from the fact 
that many simulation systems are brittle; they do a fair-to-good job of simulating 
the expected, and fail to simulate the unexpected.  It is the authors’ belief that a 
simulation system is only as good as its models, and that deficiencies in these 
models lead to the majority of these failures. This chapter will attempt to address 
these deficiencies by presenting a systematic methodology with examples for the 
development of both simulated mobility models and sensor models for use with 
one of today’s leading simulation engines. Techniques for using simulation for 
algorithm development leading to real-robot implementation will be presented, as 
well as opportunities for involvement in international robotics competitions based 
on these techniques.  
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1 Introduction 

Using modeling and simulation to develop algorithms for motion planning pro-
vides development flexibility and extensive testing capability of the algorithm 
under a variety of operational environments and robot configurations.   

The success of an algorithm depends upon, and is evaluated by, the robot's be-
havior upon execution. At the same time, as described in Kyriacou et al [Kyri08], 
robot behavior is affected by the robot’s hardware, the implemented algorithm and 
the operating environment. The combination of these three elements results in the 
execution of a scenario in a complex, highly variable and often nonlinear system. 
Therefore, developing a general use simulator is a difficult task. Generality and 
simulation fidelity counterbalance each other in a simulation development.  

During algorithm development for non-simulation based projects, the develop-
er's considerations are somewhat bounded by: (i) the algorithm's input and output, 
(ii) the computation paradigm to be followed (e.g. divide-and-conquer, greedy, 
dynamic programming etc.) and (iii) any data structures that may be used to han-
dle the data. The algorithm developer has minimal or no expectations about fea-
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tures or extra feedback provided by the execution environment and no concern 
about the quality, fidelity or accuracy of the execution environment.  Robotic al-
gorithms tend to be developed for a specific task.  Most fail at first as the develop-
er makes relaxing assumptions about the robot hardware and the operating envi-
ronment.  

In algorithm development for simulation-based projects, the developer's con-
siderations are significantly more expanded and include concerns related to the 
simulation platform. Issues such as accuracy, fidelity, determinism and overall 
realism have a direct effect on the computation and results.  

 

1.1 Methodology for Algorithm Development 

Currently, there is a void in the area of a formal methodology for simulation-based 
algorithm development. Such methodology should be able to treat the robot's 
hardware, its behavior and the operating environment as abstractions that can be 
independently -and jointly- specified and implemented.  This would provide mod-
ularity and implementation-independent specification, which in turn enhance por-
tability and allow model reuse. It would also enable the application of formal me-
thods and automated model-checking.  Most of the interactions between robots 
and the environment are developed based on a process of trial-and-error experi-
mentation. Therefore, the overall accuracy of a robot simulator depends on the 
fidelity of its three components: the robot's hardware model (including both the 
base platform and the sensors), the algorithm, and the operating environment.  
Both the robot's hardware model and the operating environment are designed 
based on an estimation of how they should behave and interact.   

Unfortunately, this results in environments and interactions based on assump-
tions that generate “virtual realities” that do not necessarily correspond to the 
physical environments and actual hardware. The assumptions may relax or exte-
nuate one or more aspects of the simulation components (terrain, sensors and ro-
bot) and have a direct impact on the behavior of the developed algorithm. For ex-
ample, a simplified terrain model or underlying physics engine with underesti-
mated friction parameters would allow the algorithm to “drive” the robot too fast.  
This would result in miscalculating centrifugal forces when making turns, and 
inaccurate and unrealistic trajectories. Another example would be having a lower 
fidelity sensor payload that would be susceptible to a noisy environment resulting 
in failure to correctly interpret landmarks or signals.  One final example would be 
using an omnidirectional holonomic steering when the physical platform is ex-
pected to be an Ackerman-steered vehicle.   These are examples of simplifying 
assumptions or omissions that compromise the faithfulness of the simulation plat-
form and significantly impact the effectiveness and appropriateness of a developed 
algorithm. 

This chapter strives to address these issues by presenting techniques for validat-
ing the robot models and algorithms that are used in the simulation. While the 
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techniques are designed to be general purpose, specific examples are provided that 
relate how these techniques were applied to models that were developed for the 
Unified System for Automation and Robot Simulation (USARSim) [Usar09]. 

1.2 A Brief History of USARSim 

The first release of USARSim was built by creating modifications to Epic’s Un-
real Engine 2 game engine1

                                                           
1 Certain commercial software and tools are identified in this paper in order to 

explain our research. Such identification does not imply recommendation or en-
dorsement by the authors, nor does it imply that the software tools identified are 
necessarily the best available for the purpose. 

. It supported models for a few differential drive robot-
ic platforms, a restricted set of sensors, and a small set of USAR specific test are-
nas. In addition, the robotic platforms could only be controlled through the use of 
the RETSINA [Syca98] multi-agent system software. 

In 2005, USARSim was selected as part of the base infrastructure for the Ro-
boCup Rescue Virtual Robot Competition. The virtual robot competition is an 
annual international event that highlights research in diverse areas such as multi-
agent cooperation, communications networks, advanced mobility, mapping, and 
victim search strategies. In addition to the competition, USARSim management 
was taken over by the National Institute of Standards and Technology (NIST) and 
an international development community was established on the open source sour-
ceforge.net website. While much of the original structure of the code was main-
tained, the code was reorganized and interfaces were standardized around SI units. 
The first official release (Version 1.0) was produced in October 2005. 

A large-scale development effort accompanied the transition to sourceforge and 
the involvement of the RoboCup community. Version 3.31, released in July 2008 
offers 15 different sensors, from odometry to an omnidirectional camera. 23 dif-
ferent robotic platforms are now available; these include wheeled robots, cars, 
tracked vehicles and flying robots. In addition, several of the sensors and robots 
have undergone rigorous validation of the forms outlined in this chapter in order 
to prove their similarities and difference from the real devices [BC08, Pepp07, 
Tayl07]. More information may be found at the USARSim website located at 
[Usar09]. 

The remainder of this chapter will detail these validation methods. First a look 
at robot platform validation will be conducted. This will be followed by a study of 
sensor validation. Next, algorithm development based on these validated models 
will be presented. Finally, a look at competitions that strive to utilize the simulated 
development cycle will be presented. 

 



4  

2 Robot Platform Validation 

Robot platform validation is crucial to providing an accurate simulated model of a 
robotic system. A large body of work exists on modeling vehicle subsystems and 
the subsystem interactions. These simulations are capable of producing very accu-
rate representations of the dynamics of mobile platforms and have been used in 
the design of commercial automotive systems. However, these systems are not 
capable of running in real-time on today’s generation of low-cost desktop hard-
ware.  Since the objective of this validation is to verify that the simulated platform 
has similar capabilities as the physical hardware, we are able to trade-off simula-
tion fidelity for real-time performance. This trade-off usually precludes modeling 
each sub-assembly of the robot, and the robot body is modeled as a single unit.  

Our definition of similar performance is that gross platform behavior in both 
the physical and simulated platforms is verified. For example, if a simulated robot 
encounters terrain that would cause the physical platform to roll over, then the 
simulated platform should roll over as well.  However, we find it acceptable for 
the physical and simulated platforms to experience different frequencies of vibra-
tion while traveling at the same speed over similar terrain.  

In order to determine a more precise definition of what gross platform beha-
viors must be modeled, it is desirable to focus the validation on the domains that 
one would expect the robot model to encounter. In our case, this includes clut-
tered, uneven terrains with the robot performing various driving maneuvers. This 
has led to focusing the validation tests on capabilities such as platform maneuve-
rability (acceleration, maximum velocity, turning radius), and rough terrain han-
dling (center of gravity, climbing ability). 

 

 
Figure 1: Example test method from test suite. The figure on the left shows the 

physical method while the figure on the right depicts the simulated version. 

 
Our validation approach then became one of comparing the performance of the 

physical system to the simulated system in various relevant scenarios. This led to 
the development of a test-suite that allows objective comparisons to be made be-
tween the physical hardware and simulated models. However, it is often the case 
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that the individual who designed or owns the platform that is to be modeled is not 
the same as the modeler. In addition, the robot owner may object to having to send 
their platforms to an outside test facility where potentially untrained individuals 
would perform the testing. Therefore, a critical design criterion for the validation 
test suite was ease of test construction and administration.  It was desired that the 
entire physical test suite could be built out of readily available, low-cost materials 
in a matter of a few days and that the tests themselves could also be conducted in a 
short amount of time. 

One such test suite has been under development at the NIST and is in the 
process of becoming an international standard [Mess07]. A sample test method 
from the test suite (the “step test”) is shown in the left hand side of Figure 1. The 
right hand side of Figure 1 shows the simulated version of this test. In the design 
of the simulated test methods, particular attention has been paid to validating that 
the test methods are accurately reproduced [Pepp07]. 

The tests that comprise the test suite may be decomposed (in order of increas-
ing complexity) into the categories of static characteristics, hardware limits, hard-
ware performance characterization, and interface performance characterization. 
The first two tests listed are the simplest to validate, and may usually be validated 
from design drawings of the physical platform. The static characteristics test veri-
fies that the simulated model conforms to the same physical specification as the 
physical hardware. Robot dimensions, sensor placements, and actuator locations 
are verified. The true center of gravity (COG) of the robot is also established. This 
may be accomplished by either finding the balance point of the vehicle, or by us-
ing a set of scales to measure the force applied by each surface of the robot where 
ground contact is made. For the case of USARSim, the COG is an input parameter 
to the physics engine and no further tuning is required. 

The hardware limits test verifies that the simulated model is constructed cor-
rectly. The range of motion of all moving parts is measured, and any motion con-
straints dictated by hard stoppages are verified. For example, a robot arm’s range 
of motion may be reduced due to arm-body collisions. This test will verify that the 
simulated collision boxes are configured correctly so as to prevent the arm from 
traveling through the simulated robot body. 

Hardware performance characterization is designed to verify the dynamic cha-
racteristics of the robotic system. As previous stated, it is not expected that a real-
time physics engine will be capable of completely modeling the dynamics of a 
complex system such as a robot. However, it is important that the physics engine 
be “close enough” to modeling this system such that algorithms developed under 
simulation will be valid on the actual hardware. The hardware performance cha-
racterization consists of two separate tests. The difficulty of both of these tests is 
adjustable, and the tests are started from an “easy” configuration, with difficulty 
increasing until the platform is no longer able to accomplish the test (if possible).  
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Figure 2: Dash-test in flat (left) and 30 degree (right) configurations. This test 
is used to measure the platform's acceleration, deceleration, and maximum veloci-
ty. The P3 robot’s laser scanner (located in the near field for the flat configura-
tion and at the top of the ramp for the 30 degree configuration) is used to measure 
the distance to the robot under test as it approaches. A flat target is attached to 
the robot under test in order to maximize the number of laser beams that hit the 
target and provide noise averaging.  

Figure 2 depicts the dash test that is designed to measure the acceleration pro-
file, deceleration profile, and maximum velocity for a robot under the added stress 
of accelerating on an inclined plain.  Once the maximum slope that a platform can 
climb is determined, the platform is tested at 100%, 50%, and 10% of the maxi-
mum slope as well as flat conditions. Certain platforms will flip over before reach-
ing a slope that they lack the motor torque to climb. For these cases, a maximum 
slope is chosen based on platform and personnel safety.  

Starting from zero velocity, the robot drives at maximum acceleration until full 
speed is reached. After a period of steady state velocity, the robot decelerates back 
down to zero velocity.  During this test, a range sensor is used to observe the 
progress of a target fixed to the robot as the robot drives through the metric. In the 
case of Figure 2, a SICK LMS 200 that is mounted on a spare platform was uti-
lized. 

By measuring the difference in distance provided by successive hits on the tar-
get by a laser beam, a velocity measure is computed. For this metric, the velocity 
computation is performed at 10 Hz for each beam that impacts the target. All of 
the measured velocities are averaged together to provide a velocity estimate for a 
given run at a particular time instant.  



 

7 

 

Figure 3: Velocity profiles for both a physical model and its simulated coun-
terpart while operating at a 30 degree slope. The plot depicts time(s) vs. velocity 
(m/s). 

 

Figure 4: Velocity profiles for both a physical model and its simulated coun-
terpart while operating on flat ground. The plot depicts time(s) vs. velocity (m/s). 
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Figure 5: This figure show the velocity error for the simulated system as a per-

centage of the desired velocity. Plots for both the 30 degree ramp and flat test 
methods are shown. 

 
This test is performed 10 times for each slope setting. The results from the in-

dividual tests are then weighted based on the number of beams reporting veloci-
ties, and averaged together to form a velocity profile. 

Figure 3 and Figure 4 show the measured profile for a platform under test com-
pared to a tuned model from simulation. The test for Figure 3 was performed on 
the 30 degree slope ramp while the test shown in Figure 4 was performed on a flat 
surface. In order to achieve this tuning, the maximum track velocity and motor 
torque settings of the simulated model are tuned. The exact technique used for this 
tuning procedure is of course simulation system dependent. For USARSim, the 
physics engine has the ability to dynamically modify the model’s parameters. The 
authors took advantage of this capability to dynamically modify parameters during 
a run until the average of actual velocities matched our desired average velocities. 
These modifications are currently carried out by hand; in the future it is desired 
that this tuning will be automated. Figure 5 depicts the velocity error between the 
simulated platform and the real platform as a percentage of the real platform’s 
velocity. As may be seen in this figure, the model is able to consistently capture 
the velocity profile for the flat test area. However, there is an acceleration compo-
nent that the real platform exhibits when traveling up a steep hill that is not cap-
tured by the simulation. It may be seen that there is increasing error with time as 
the real platform accelerates up the hill. This error has an upper bound of about 15 
%.  
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The second hardware performance test utilizes the metric shown in Figure 1. 
This test measures the ability of a platform to climb steps of various heights. The 
test is started with a step of height 5cm and the step height is increased by 5cm 
increments until the platform is unable to reach the landing. The tubes on the lead-
ing edge of the step are free-spinning and are designed to prevent the platform 
from gripping the step and pulling itself up. Video of the physical platform per-
forming this test is collected, and the simulation is tuned so that the platform mod-
el achieves similar performance. The main simulation parameters that are adjusted 
during this process deal with tire properties. However, it may be necessary to tune 
the COG and motor torques as well. 

The final area for platform validation concerns the control interface to the plat-
form. It is desired that when presented with identical command streams, the physi-
cal and simulated platforms will exhibit similar responses. For hardware platforms 
that support a USARSim supported interface, this test is a simple matter of apply-
ing the same command stream to both the physical platform and the simulated 
platform. The platforms’ trajectories may then be measured and compared. Such a 
test was first performed by [BC07]. Differences in behavior may usually be com-
pensated for by scale factors on the command stream. When the interfaces do not 
support identical command streams, but a command API is available for the plat-
form under test, a command translator may be constructed.  The test is then able to 
proceed as described above. In the worst case, the command syntax is proprietary, 
and the only way to discern what input is being delivered to the physical platform 
is by measuring battery current to the motors using a system such as the one de-
scribed in [SWRI]. 

Once all of the above tests have been performed and the platform model is 
complete, it is still necessary to validate the validation. This is accomplished by 
measuring the physical and simulated performance of the platform on a subset of 
the NIST test methods that were not used for the initial validation; for example, 
staircase climbing. If performance of the two platforms on these methods is simi-
lar, then one may consider the platform to have been successfully validated.  

 
3 Sensor Validation 

Sensor validation follows the same general-purpose validation methodology that is 
used to validate other components of the simulation system, e.g. robots and actua-
tors. The tenet is to implement the same experiment in simulation and in reality, 
and to numerically compare the results. The choice of the numeric metric to use 
for this comparison is in general non trivial, and potentially amounts to a demand-
ing research question on its own. In certain cases it will be possible to directly 
compare the outputs of simulated and real sensors, while in other scenarios it will 
be preferable to contrast the results of simple computational procedures that 
process the sensor output. The appropriate choice depends on the sensor under 
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consideration, and no one-catch-all formula exists, even though some indications 
can be extracted from the examples presented in the following. 

Setting up a virtual-reality experiment implies various programming and mod-
eling tasks. Clearly, an appropriate sensing model needs to be incorporated within 
the simulation. Additionally, a faithful model of the real environment has to be 
developed into the testing environment. This is an unavoidable step because the 
surrounding environment naturally influences the sensing process. The goal of the 
sensor validation stage is twofold. Not only is it important to determine the degree 
to which a simulated sensor delivers results that can be extrapolated to infer re-
sults of the real world system, but it is also pivotal to identify the sensors that fail 
to replicate phenomena observed with their real counterparts. In the past, a set of 
very different sensors have been modeled and validated [CWL06, CSN06, BC08], 
and we provide a short synopsis of the methodology and results. 

According to our experience, and not surprisingly, the best way to develop a 
realistic sensor model is to embed, directly into the simulation engine, a computa-
tional method that replicates the physical phenomena occurring in the real device. 
This approach necessarily implies the inclusion of appropriate models of the noise 
affecting the process. This last step is particularly challenging because these noise 
sources are often difficult to characterize or add to the system. In the following we 
illustrate the methodology and findings we obtained while modeling and validat-
ing two different sensors, namely a laser range finder and a GPS sensor. Two rea-
sons motivate the choice of these sensors as working examples to demonstrate our 
general-purpose validation method. First, these are among the most popular sen-
sors used to solve the localization problem indoor and outdoor, respectively. Se-
condly, it is rather straightforward to implement their underlying working prin-
ciples within the simulation environment by using ray-tracing primitives offered 
by the game engine. 

3.1 Laser range finder 

Laser range finders find applications in a variety of robotic tasks, such as navi-
gation and map building, just to name a few. These devices are essentially time of 
flight devices, i.e. they measure the time elapsed between the moment a beam is 
emitted and its reflection comes back to the sensor. By relating this time to the 
physical properties of the signal being sent and sensed, the distance between the 
sensor and the surface that reflected the beam can be inferred. These sensors 
usually emit a series of beams covering a wide angular range. The Sick PLS, 
probably the most popular sensor of this type, covers a range of 180 degrees with 
beams spaced either 1 or 0.5 degrees apart. Such a sensor is straightforwardly mi-
micked in USARSim by exploiting the ray-tracing primitive operation made avail-
able by the underlying game engine. Unfortunately, ray-tracing can be considered 
an error-free function in the simulated environment that does not take into account 
the beam flight time or the surface of reflection – important error sources in real 
laser range finders. Therefore, appropriate noise needs to be added to the simula-
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tion in order to replicate real sensor behavior. Two noise sources mainly affect this 
sensor. The first are jitters observed in the measured distances due to errors while 
measuring time intervals. This error is fairly simple to model and imitate in the 
simulation environment. The second error stems from unreturned beams, i.e. 
beams that are not reflected by the surface they hit. This second error is instead 
rather difficult to replicate in simulation because it would imply labeling all the 
surfaces in the simulated world as reflective or non-reflective, or assigning a ref-
lective coefficient to each surface. While this can be achieved in principle, it im-
plies an amount of work that is definitely not worth the effort and has therefore 
not been implemented in the simulator. 

Since the sensor under consideration returns numerous values, it is possible to 
compare real and simulated data point by point, or to relate the result of a function 
computed on the sensed data. This latter approach is embraced in this case study. 
In particular, we will show the results of the well-known Hough algorithm for line 
detection. This example is particularly appealing because it illustrates the advan-
tage of simulation from two points of view. Firstly, the algorithm requires hand 
tuning of a few parameters. This process is driven by the data being processed and 
may be particularly time consuming if being performed with a real device. Se-
condly, the algorithm is known to be fairly sensitive to noise in the data. By alter-
ing the amount of noise affecting the simulated sensor it is therefore possible to 
assess the robustness of the algorithm to different noise levels. This later aspect is 
in our view one of the most appealing aspects of the simulation system we pro-
pose. Obviously, this assessment will be appropriate only if it will be possible to 
show a strong correlation between simulation and the real world system. 

 
 

 
Figure 6: Real and simulated robots observed while validating the range scan-

ner simulation. The cross in Figure 7 shows the position of the robot in the envi-
ronment, where these pictures were taken. 

Figure 6 shows how the experiment is executed, i.e. the simulated and the real 
robot are positioned at the same place in the physical and simulated environment. 
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Figure 7 shows a superimposition of the data collected by the two sensors while in 
the position depicted in Figure 6. It is evident that the data returned by the two 
sensors are very close to each other. This visual evidence can be numerically as-
sessed by comparing how the Hough transforms computed from the two datasets 
relate to each other. It should be stressed that this choice is not the only possible 
one, nor necessarily the best one, but was rather selected because the simulation 
environment was being used to perfect a robot control system where line detection 
via the Hough transform was a building block for the higher layers. 

 

Figure 7: Data collected by the simulated and real sensors. The location of the 
robot, from which the data was taken, is marked by a cross (at the 0,0 coordinate). 
The cross also shows where the pictures in Figure 4 were taken. 

Without getting into a technical discussion of how the Hough transform is 
computed or used later on (the reader is referred to [CWL06] for more details), we 
just mention that its final result is stored in a grid of non negative integer values. 
After computing the Hough transform for both datasets over a grid with 2592 
cells, the average difference between values stored in corresponding cells is 
0.0328. In order to put this value into context, it should be mentioned that the 
highest value stored in the grids is 6, and that for more than 99% of the cells, the 
difference is smaller or equal than 1. These values support the claim that results 
obtained with the simulated sensor can be extrapolated to the real sensor as well. 

3.2 Global Positioning System 

Robots performing in outdoor environments rely more and more often on the 
availability of a Global Positioning System (GPS) sensor to obtain an estimate of 
their global position. The GPS system depends on the presence of a set of satel-
lites orbiting around the earth according to known trajectories. In essence, a GPS 
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sensor periodically receives signals from the orbiting satellites and uses this in-
formation to infer its position. A signal emitted by a satellite is received by a GPS 
receiver only if there is line of sight between the two. The GPS receiver then 
processes all information included in the received signals and computes its posi-
tion. The more satellites that are within line of sight, the more accurate is the pose 
estimation produced by the GPS sensor (the reader is referred to [BC08] for a 
more detailed description of the computational aspects and additional results). 

 Based on this working principle, a GPS sensor simulator can be developed as 
follows. Every time a new reading from the GPS sensor is requested, ray tracing is 
performed between the simulated receiver and all of the satellites in order to de-
termine which ones are visible from the receiver. The receiver’s position is then 
computed through simple mathematical computations. Gaussian noise is superim-
posed to the computed position based on the number of detected satellites. This 
brief description reveals that the pose computed by the simulated sensor replicates 
the computational approach exploited by the real receiver. In particular, tracing 
between the receiver and the satellites entails two different kinds of knowledge. 
First, at any point in time it is necessary to know the position of the satellites. Se-
condly, while performing the tracing, it is necessary to take into account the pres-
ence of obstacles possibly obstructing the path between the receiver and a satellite.  

Since the accuracy of the pose estimation is intimately related to the number of 
detected satellites, and this value is commonly made available by most GPS re-
ceivers, one good numeric value that can be used to compare the performance of 
the real and simulated device is the number of satellites detected. To do so, it is 
not only necessary to know the satellites’ positions, but also to include into the 
simulated environment all the elements that may possibly preclude the detection 
of a satellite. In the real world experiment, a mobile robot equipped with a GPS 
receiver moves in the University of California, Merced campus between a set of 
multi-story buildings. Hence, in the simulated experiment, corresponding geome-
trical models of these buildings were inserted in the test environment. Given that 
the number of detected satellites influences the accuracy of the estimated pose, the 
other numerical parameter that can be numerically compared is the difference be-
tween the two position estimates. Obviously, this value should be as close to 0 as 
possible. For the GPS sensor, it is therefore possible to numerically compare the 
values produced by the sensor under consideration. 

It should be mentioned that satellite occlusion is definitely not the only source 
of uncertainty for GPS sensors, but it is surely the easiest to faithfully model. 
Moreover, as evidenced in the experiments described in the following, while just 
including this source of error, a satisfactory performance is observed. In this con-
text satisfactory means that the numerical values observed in the two experiments 
are close to each other thus providing evidence of the accuracy of the simulation. 
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Figure 8: Comparison between the traces produced by the real and simulated 

GPS sensor. The traces have been superimposed to a satellite image of the Uni-
versity of California, Merced campus. 

 

 
Figure 9: Number of detected satellites as a function of time for the yellow ex-

periment in Figure 8. 
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The first experiment is illustrated in Figure 8. Both the simulated and the real 
robots were driven though three paths in the campus quad. The picture shows the 
pose returned by the simulated and real GPS sensors. It is evident, by visual in-
spection, that the two paths are similar. However, this visual correspondence can 
be numerically evaluated as well. In fact, the average difference between the two 
pats is 1.49 meters for the first path (yellow), 4.57 meters for the second (blue), 
and 2.37 meters for the third (green). Even though these numbers might seem 
high, the reader keep in mind that the typical accuracy of civil GPS sensors is 3 
meters. The second experiment is illustrated in Figure 9. 

The chart shows the number of satellites seen by the real and simulated robot. 
In this case it is manifest that the simulated sensor almost always sees a number of 
satellites greater than the real one. This is easily explained by the fact that the si-
mulated model does not include the numerous trees that are present in the real 
world. In any case, as evidenced in the first experiment, it turns out there is a good 
agreement between the data returned by the two sensors, therefore one can be con-
fident that results obtained in simulation can be extrapolated to real world sys-
tems. 

 
4 Algorithm Development 

Robot simulation platforms provide versatile environments for the development 
of robotic algorithms. Developers can easily test algorithm execution using mul-
tiple robotic platforms in various synthetic environments and operational scena-
rios. This makes simulation-based algorithm development an indispensable re-
search tool that allows extensive testing of robotic behavior in configurations and 
environments in which physical testing would otherwise be prohibitively expen-
sive or even impossible to achieve. 

Here, we focus simulation-based algorithm development analysis in the context 
of mobility and robot motion planning. Motion planning is an active research area 
and has been studied for decades. Depending on the approach, it has been referred 
to as motion planning, path planning or trajectory planning, but in essence it has 
always referred to the same class of problems.  The seemingly trivial task of in-
structing a robot to move between two points on a plane via a collision-free path 
often becomes surprisingly difficult to generalize for any two points on any plane 
with any configuration space.  

Early formulations of the problem appeared almost forty years ago using 
graphs for shortest path searches (visibility graphs) between polygonal obstacles 
[Nils69]. Another formulation of the motion planning problem, known as the pi-
ano movers' problem [Cann89, Schw83, Schw83a] was studied from a geometry 
perspective. Not unlike similar current problems of robots navigating past ob-
stacles, the examined task was to successfully move a piano between house rooms 
while avoiding obstructions. The examination ignored any kinematic constraints 
such as how piano wheels -if they existed- would enable or constrain steering. It 
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also disregarded speed and any temporal aspect such as elapsed time, related to the 
navigation of the piano from room to room.  

Since this first formulation, many different motion planning approaches and 
techniques have been developed such as grid sampling, configuration spaces [Lo-
za80], roadmaps [Cann88], randomized potential fields [Barr97], probabilistic 
roadmaps (PRMs) [Kavr96], rapidly-exploring Random Trees (RRTs) [LaVa00] 
and many others. Some of these techniques have crossed the boundaries of robot-
ics research and have been applied in other domains and disciplines. For example, 
motion planning algorithms have been applied to biology, computer animation and 
medical surgery for protein folding pathways [Song01, Thoma05], virtual reality 
[Shen95] and laparoscopy procedures [Fara00], respectively. 

Today the formulation of motion and mobility problems is significantly more 
complex. Task completion is extended with additional requirements such as max-
imizing speed, minimizing navigation distance (e.g. shortest-path) and energy 
consumption (i.e. battery power) or maximizing path accuracy.  Compounding the 
complexity is: the operation in dynamic environments with uneven terrains and 
moving obstacles, the utilization of sensors and their imperfect readings and even 
the coordination and interaction of multiple robots in the same area. 

The volume, breadth and depth of research and multi-disciplinary application 
of motion planning techniques emphasize the importance of the work in this area 
and yet it illustrates the inherent complexity of the problems to be solved.  Even 
the original problem of moving a piano would be a discouraging proposition for 
anyone to physically validate using trial-and-error testing.  Attempting to test, 
verify and validate new algorithms on complex robotic platforms operating in dy-
namic and even hostile environments, such as volcanoes, underwater, or on distant 
planets, is a daunting and prohibitively expensive, if not impossible task. This 
leads one to explore the utility of performing algorithm development in a safe, 
inexpensive simulated environment. 

However, the effectiveness and appropriateness in simulation-based algorithm 
development is highly dependent on the characteristics of the simulation platform.  
The following are some desirable simulation platforms characteristics: 
(a) Generality: to allow the testing and experimentation of different algorithms on 

different simulated robots with various sensor payloads and in different simu-
lated operating environments.  

(b) Accuracy: because simulated algorithm executions are expected to approx-
imate reality. The narrower the gap between the simulation execution and the 
corresponding physical execution, the more accurate the simulation platform 
is.  

(c) Computational soundness: which implies that executed algorithms and compu-
tations are deterministic. Non-deterministic simulations compromise the repea-
tability of the execution which is necessary to determine the stability of the si-
mulation platform.  

From a software engineering perspective, simulation platforms must also have 
features that support and augment the above characteristics:  
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(a) Extensibility:, is related to (i) framework extensibility which includes scena-
rio and environment extensibility so that new robot profiles, terrain informa-
tion, environment artifacts, configuration spaces, sensor types and other com-
ponents can be easily added or updated; (ii) algorithm development extensi-
bility so that existing algorithms can be extended, new algorithms can be de-
veloped or easily replaced in either case without affecting the underlying 
framework.  

(b) Temporal control: to allow real-time display and simulation speed and replay 
capability. 

(c) Realism: in rendering the visual aspects of the simulation so robots do not 
seem to navigate over obstacles. Realism also applies in the rendering of sen-
sor readings that may be inaccurate due to inherent noise in the environment.   

(d) Interface versatility and richness: to enable easy control of the simulator and 
experiment design while providing a high degree of configure-ability and 
feedback during simulation executions. 

(e) Logging and meta-information collection mechanisms: to provide a way to 
collect and analyze quantitative measurements from executed experiments. 

(f) Scalability: to allow the inclusion of multiple robots or to allow framework 
extensibility as discussed earlier.  

 

4.1 Criticisms and Advantages 

Regardless of the particular characteristics and features of a simulation platform, 
the inherent complexities of robotic environments may introduce significant dif-
ferences between the simulated and the real environment.  The combination of 
extensive robot configuration parameters, diverse terrain options, high variability 
in sensor readings and error rates, coupled with operational scenarios that change 
in real-time, create very dynamic environments that are very hard to accurately 
replicate in a simulation.  All of these negatively affect the reliability of simulation 
platforms and the algorithms developed using them. As mentioned earlier, further 
aggravating the situation is the lack of a formal methodology for simulation-based 
algorithm development.  

Despite these criticisms, simulation-based algorithm development has advan-
tages over the alternative, the direct development on the physical platform and 
environment. Simulations allow for:  

 Inexpensive and rapid setup of a virtual experimentation environment; 
 Time execution acceleration, providing the developer insight on  how an 

algorithm would execute after long time periods without having to ex-
ecute them in real time; 

 Consistent environment for experimentation; 
 Test and experiment repetition; 
 Easy examination of incremental development progress;  
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 Risk reduction for damage to hardware or the operating environment due 
to errors in execution. 

 
Many simulation environments and frameworks have been developed and can 

be used to model different environments and simulate tasks. Some are described 
as general frameworks.  Others specialize and focus on certain aspects of simula-
tion. Specialized frameworks tend to provide greater accuracy and fidelity for the 
particular task they model, but lack extensibility which general frameworks tend 
to be better equipped to provide. For example, a non-comprehensive list of robotic 
simulation platforms and frameworks includes: Darwin2K [Lege00], Gazebo 
[Koen04], Player/Stage [Gerk03], SimRobot [Laue06] and Webots [Michl98]. 

In the context of a Virtual Manufacturing Automation Competition, we em-
barked on the simulation-based development of two algorithms: one to address 
waypoint navigation and another to perform docking. Both of the algorithms were 
developed, exercised, tested and verified using a simulation infrastructure com-
prised of USARSim [Balak06, Carp07], a Gamebots [Adob01] variant of the Un-
real Engine [Unre08] and the Mobility Open Architecture Simulation and Tools 
(MOAST) framework [Bala08].  

The USARSim infrastructure supports algorithm experimentation.  The 
MOAST framework allows the separation of algorithm development from the 
different system levels (echelons) and configurations which control different as-
pects of the experiment. 

The operational scenario of the navigation algorithm was based on waypoints 
for terrestrial navigation. Waypoints are longitude and latitude-based coordinate 
locations used to construct routes. In the context of robotic navigation, waypoints 
can serve as the guides for a robot to follow a specific path. While following way-
points is trivial, idiosyncrasies of the robotic platform and the operating environ-
ment may render this type of navigation inaccurate and ineffectual under some 
circumstances. An example of such a case is with Ackerman-steered vehicles. The 
limitation of such vehicles is their inherent inability to perform sharp turns to 
reach waypoints in very close proximity. Specifically, waypoints located within 
the vehicle’s instantaneous center of rotation (ICR). This case presents two navi-
gation challenges. First, it may cause the vehicle to deviate considerably from the 
prescribed path. Second, it may cause the vehicle to enter an endless spiral path 
attempting to reach the practically unreachable waypoint. To address these chal-
lenges we developed an algorithm that visits all waypoints on an arbitrary pro-
jected path, minimizing path deviation, avoiding spiral movements and continuing 
navigation on the projected path. Using an arbitrary navigation path of multiple 
segments, the algorithms were executed using a simulated Ackerman-steered, au-
tomated guided vehicle (AGV) to navigate the path. The navigation path or the 
“world,” along with an arc file, were provided as input.  The simulated vehicle 
generated the waypoints to be followed to complete the path from the initial loca-
tion to a goal waypoint. The simulation environment provided a number of confi-
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gurable parameters for the vehicle that could be adjusted to modify the navigation 
performance. 

Table 1 is an example of the default, configurable navigation parameters. 
 

Table 1. Unit Loader Default Navigation Parameters. 

Vehicle (Unit Loader) Parameters 
MAX_TRAN_VEL 5 
MAX_TRAN_ACC 50 
MAX_ROT_VEL 600 
MAX_ROT_ACC 6000 

V_CUTOFF_ANGLE 210 
W_CUTOFF_ANGLE 10 
CONTROL_POINT 0.3 0 0 0 0 0 

 
For the experiment, a Unit Loader AGV was used, and all parameters but velocity 
were kept at their default settings. 

In one experiment, the focus was on path navigation accuracy and speed of 
path completion. To examine the range of the results, six simulation executions 
were performed with different vehicle velocity parameters (Table 2).  

Table 2: Algorithm execution results with variable velocities. 

Execution ID Velocity (m/sec) Time (sec) Number of Re-
verse Actions 

001 1.0 443 1 
002 2.0 235 1 
003 2.5 215 7 
004 3.0 220 11 
005 4.0 182 16 
006 5.0 173 20 

 
By examining the results and plotting the velocity with respect to the time it 

took to complete the path, it is shown that as velocity increases, the time required 
to complete the path decreased (Figure 10). 
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Intuitively, this is an expected result; however, it does not reveal any informa-

tion about the accuracy of the followed path. In fact, it hides the effect that the 
higher velocities have on accuracy in following the path. Figure 11 reveals that 
while the time for path completion is reduced with higher speeds, the amount of 
corrective actions, in this case, the number of times the vehicle must reverse to 
continue reaching all of the path waypoints also increases dramatically.  

 
For velocities that do not exceed 2.0 m/sec the number of reverse corrective ac-

tions is the same and negligible. However, even a 0.5 m/sec velocity increase 
causes the number of corrective actions to increase by a factor of seven. Doubling 
the velocity from 2.0 m/sec to 4.0 m/sec results in a sixteen-fold increase of the 

Figure 10: Plot of the time over variable velocity of multiple executions o  
the same navigation path. 

Figure 11: Plot of the number of reverse actions over variable velocity of multiple 
executions of the same navigation path. 
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number of corrective actions. The steep increases in the number of corrective ac-
tions indicate that the vehicle must maneuver, and therefore deviate from the orig-
inal path to compensate for poor orientation from waypoints. These measurements 
and analysis was possible only because of the ease in tuning different parameters, 
afforded by the simulation platform.  

The simulation environment allowed us to develop a successful navigation al-
gorithm and to analyze the performance of the algorithms. To examine the range 
of the results, six simulation executions were performed with different vehicle 
velocity parameters. By examining the results and plotting the velocity with re-
spect to the time it took to complete the path, we were able to identify additional 
elements about our algorithm. As expected, when velocity increased, the time re-
quired to complete the path decreased. At the same time, increased velocity im-
pacted path accuracy. While the time for path completion reduced with higher 
speeds, the number of corrective actions, where the vehicle must reverse and 
change orientation to continue reaching all of the path waypoints, also dramatical-
ly increased. We were also able to identify velocity ranges where the number of 
corrective actions was negligible or very small, along with velocity ranges that 
caused a seven-fold, and on other occasions, sixteen-fold increase in the number 
of corrective actions.  

Clearly, the simulation-based algorithm development gave us an advantage by 
being able to execute the algorithms multiple times and being able to collect quan-
tifiable, measurable data related to the performance of the robotic platform. At-
tempting to perform the same development on an actual platform would have tak-
en a tremendous amount of time and would have risked significant damage to the 
robot during the early stages of development. 

The operational scenario of the second algorithm was based on properly dock-
ing a vehicle to a conveyor belt docking station. Autonomous robot docking re-
quires accurate path following and accurate alignment with the target location, 
typically a docking station.  

Using the simulator, we developed a novel, partially heuristic algorithm that al-
lows accurate docking for Ackerman-steered vehicles. Multiple experiments were 
performed to better understand and analyze the heuristic element of the technique. 
The algorithm was exercised in gradually smaller rooms to evaluate the versatility 
of the algorithm under more constrained environments.  The results underscored 
the impact of the vehicle’s steering characteristics in docking precision and may 
prove valuable in attempting to remove the heuristic element in future algorithms.  

Again the simulation-based algorithm development gave us an advantage by 
being able to execute the algorithms multiple times and in variable-sized rooms.  
Attempting to perform the same development on an actual platform would have: 
taken a tremendous amount of time, it would have been difficult to replicate the 
extensive testing in various sized rooms, and it would have risked significant 
damage to the robot during the early stages of development. Preliminary valida-
tion based on visual inspection of the algorithm on a physical platform (a NIST 
modified ATRV platform) demonstrated that the docking objective was achieved.  
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5 Competitions 

The framework under which the above algorithm development took place was 
the IEEE Virtual Manufacturing Automation Competition (VMAC) [VMAC09]. 
Both this competition, and the RoboCup Rescue Virtual Robots Competition 
[ROBO09] utilize the USARSim simulator as part of their infrastructure. 

The RoboCup Rescue Virtual Robots Competition falls under the umbrella of 
the RoboCup Rescue competitions. The RoboCup Rescue competitions provide a 
benchmark for evaluating robot platforms for their usability in disaster mitigation 
and are experiencing ever increasing popularity. Roughly speaking, the league 
vision can be paraphrased as the ability to deploy teams of robots that cooperative-
ly explore a devastated area and locate victims. Farsighted goals include the capa-
bility to identity hazards, provide structural support and more. RoboCup Rescue is 
structured in two leagues, the Rescue Robot League and the Rescue Simulation 
League. Whereas the Rescue Robot League fosters the development of high-
mobility platforms with adequate sensing capabilities, e.g. to identify human bo-
dies under harsh conditions, the Rescue Simulation League promotes research in 
planning, learning, and information exchange in an inherently distributed rescue 
effort. The Rescue Simulation League contains three competitions; the Virtual 
Robot Competition, the Agent Competition, and the Infrastructure Competition. 
The Virtual Robots competition simulates, compared to the Rescue Agents com-
petition, small teams of agents with realistic capabilities operating on a city block-
sized scenario.  

The Virtual Robot competition, first held during the RoboCup competitions in 
2006, provides a realistic simulation environment for simulating conditions after a 
real disaster, such as an earthquake, a major fire, or a car wreck on a highway. 
Robots are simulated on the sensor and actuator level, making a transparent migra-
tion of code between real robots and their simulated counterparts possible. The 
simulation environment allows evaluation of the performance of large robot teams 
and their interactions. For example, whereas in the real robot competition there are 
usually only one or two robots deployed, in the Virtual Robot competition teams 
of up to twelve robots are deployed. Furthermore, the simulator provides accurate 
ground truth data allowing an objective evaluation of the robots’ capabilities in 
terms of localization, exploration and navigation, e.g. avoidance of bumping. 
More information on the virtual rescue competition may be found in Balakirsky et 
al. [Bala07]. 

The VMAC competition focuses on Automated Guided Vehicles (AGVs). 
These vehicles represent an integral component of today’s manufacturing 
processes. Major corporations use them on factory floors for jobs as diverse as 
intra-factory transport of goods between conveyors and assembly sections, parts 
and frame movements, and truck trailer loading/unloading. 

The competition design was based on the successful RoboCup Rescue Virtual 
Robots Competitions. Since all code used in these competitions is open source, 
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participants are able to learn from their competitors and concentrate their research 
in their particular areas of expertise. It was envisioned that researchers from multi-
agent cooperation, mapping, communications networks, and sensory processing 
backgrounds would all be interested in participating. 

The initial competition design was formulated by using the SCORE framework 
[Schl06]. This framework specifies that an overall system scenario be defined, and 
then basic elemental skills that allow for the successful completion of the scenario 
be extracted. Systems are then evaluated on both their ability in the elemental 
tasks as well as the overall scenario.  

From the outset, the competition was to be based on real-world scenarios. 
Based on NIST’s industry outreach effort, the scenario chosen was a factory set-
ting that had significant clutter, maze-like passageways of various widths, and 
dynamic obstacles. The objective was to have several Ackerman-steered AGVs 
pick-up packages at a central loading station, and deliver these packages to one of 
several unloading stations. The package destinations were encoded in a Radio 
Frequency IDentification (RFID) Tag on each package.  

Utilizing the SCORE framework, this scenario was decomposed into elemental 
tasks that included traffic management, route planning, accurate path following, 
and docking with loading/unloading stations. While the baseline code provided to 
the teams was capable of performing the objectives, it was far from optimal.  

For the first running of the competition, a decision was made to only compete 
two of the basic elemental tasks; accurate path following, and docking. One 
team’s experiences with the virtual development cycle for this task are outlined in 
the previous section. More information on the VMAC may be found on the 
VMAC webpage [VMAC09] or in an overview by Balakirsky et al. [Bala08b]. 

 
6 Conclusion 

Robot simulators are useful tools for developing algorithms to control robot 
behavior. However, the execution of robotic algorithms is not confined to the in-
ner-workings of a CPU but have a physical manifestation in real environments 
with physical robots traversing real terrains and avoiding real obstacles. This 
means that robotic algorithms are assessed both theoretically and practically.  

Simulation platforms allow the development of algorithms in a safe environ-
ment where execution errors are benign and hardware reliability is not an issue. 
Such platforms allow great flexibility in designing complex environments and 
testing algorithms repeatedly under multiple scenarios.  

At the same time, these platforms have limitations.  Algorithm development on 
a simulation assumes that the information about the environment is accurate. Yet 
the complexity of the operating environment can be daunting and certain variables 
such as terrain characteristics or sensor sensitivity may be omitted or ignored. In 
addition, all of the elements of a simulation: the robot, the terrain and the sensor 
payload are subject to simplifying assumptions. These assumptions may reduce 
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the realism of the simulation enough to render the developed algorithm insuffi-
cient for deployment in a real world environment.  

 
Still, none of these concerns are enough to offset the tremendous benefits of simu-
lation platforms in terms of cost savings, risk reduction by testing on the real plat-
form, having a consistent experimentation environment and having the ability to 
repeatedly test and collect measurable, quantifiable data. 
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