
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 1

Multi-Robot Routing Algorithms for Robots
Operating in Vineyards

Thomas C. Thayer Student Member, IEEE, Stavros Vougioukas Senior Member, IEEE,
Ken Goldberg Fellow, IEEE, Stefano Carpin Senior Member, IEEE

Abstract—We consider the problem of multi-robot routing in
vineyards, a task motivated by our ongoing project aiming at
creating a co-robotic system to implement precision irrigation
on large scale commercial vineyards. The problem is related to
a combinatorial optimization problem on graphs called “team
orienteering”. Team orienteering is known to be NP-hard, thus
motivating the development of heuristic solutions that can scale to
large problem instances. We propose three different parameter-
free approaches informed by the domain we consider, and
compare them against a general purpose heuristic formerly
developed. In numerous benchmarks derived from data gathered
in a commercial vineyard, we demonstrate that our solutions
outperform the general purpose heuristic and are scalable, thus
allowing us to solve instances with tens of thousands of vertices
in the graphs.

Note to Practitioners: Routing problems with budget and mo-
tion constraints are pervasive to many applications. In particular,
the structural constraints considered in this problem are found
not only in agricultural environments, but also in warehouse
logistics and other domains where goods are arranged along
regular linear structures. This paper proposes and analyzes
algorithms that can be applied when multiple agents must be
coordinated in these environments. In particular, by utilizing
domain specific knowledge, the solutions proposed in this work
outperform general purpose approaches that poorly scale with
the size of the environment. The algorithms we present also
ensure that no collisions occur between robots – an aspect
normally neglected in algorithms formerly proposed to solve the
team orienteering problem.

Index Terms—Precision agriculture; multi-agent coordination;
team orienteering.

I. INTRODUCTION

Wine grapes are ideally grown following a stress irrigation
regime, i.e., each vine receives a limited amount of water
to bolster sugar content and emphasize flavonoids. Most irri-
gation systems in use today lack the ability to adjust water
delivery at a fine grain level, e.g., on a per vine basis or
based on small zones. While water stress is desirable for vines,
over-stressing vines may lead to inferior yield and even to
vine death. Therefore growers tend to over-irrigate avoiding
potential losses. Delivering “the right amount of water” is the
main objective of precision irrigation and remains an open

T.C. Thayer and S. Carpin are with the University of California, Merced,
CA, USA. S. Vougioukas is with the University of California, Davis, CA,
USA. K. Goldberg is with the University of California, Berkeley, CA, USA.

This material is based upon work that is partially supported by the USDA-
NIFA under award number 2017-67021-25925 (NSF National Robotics Ini-
tiative). Thomas Thayer was also partially supported by the NSF under grant
DGE-1633722. Any opinions, findings, conclusions, or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the USDA and NSF.

challenge, especially in large-scale commercial vineyards. This
problem is particularly acute in California, where wine grape
production has a significant economic impact, but freshwater
availability is limited. Recent multiyear droughts have made
the situation even worse, especially when considering compe-
tition for water use in other high-value crops. The US - where
freshwater usage in agriculture is estimated to be 85% - is not
facing this problem alone; worldwide usage of managed fresh-
water in agriculture is estimated to be around 70% [1], making
agricultural water conservation a major global challenge. If we
look at the irrigation infrastructure from a control standpoint,
we find an abundance of data gathered from vineyards through
remote or in-site sensing, but the ability to modify the inputs to
the system (i.e., water) is very limited. Equipping each vine (or
small groups of vines) with an electrically actuated variable-
rate emitter is prohibitively expensive, and unsuited for ex-
tended operations in adversarial environmental conditions. To
mitigate this problem, passive, variable-rate emitters could be
used, but these must be adjusted manually by workers. Due
to the sheer size of typical vineyards and the ever increasing
labor shortage in the agriculture industry, this approach does
not scale and is economically infeasible.

In development by the University of California, RAPID
(Robot Assisted Precision Irrigation Delivery) is a scalable
irrigation management solution that aims to assist vine growers
with water conservation efforts while preserving yield and
quality. The objective of RAPID is to create a co-robot system
with fleets of robots navigating through vineyards to adjust
passive emitters delivering the appropriate amount of water
to each vine. In [2] we presented PEAD (Portable Emitter
Actuation Device), i.e., an actuator that can be used to latch
and adjust a variable rate emitter, and in [3] we showed how
this concept can be extended for mounting on a robotic arm.
Ultimately, the robotic arm and actuator will be mounted on
a mobile platform moving through a vineyard to perform the
required adjustments to each emitters’ setting.

The motion of the mobile robot through a vineyard is subject
to various constraints. In particular, the robot will not be able
to follow a straight line when moving between two arbitrarily
chosen emitters, because vines and irrigation lines prevent
changing vine rows unless the robot is at either end of the
vineyard. This is illustrated in figure 1. Moreover, due to the
limited onboard power supply, the robot needs to periodically
return to a designated site for a recharge or swap of its
batteries. In [4] we showed that this problem is related to
the an optimization problem known as orienteering, and we
proved that it remains NP-hard even when considering the



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 2

Fig. 1: A test platform for identifying challenges in navigation
within a vineyard. Irrigation lines and vine stocks block travel
between rows, thus creating motion constraints.

special structure of the graph induced by the environment the
robot operates in. Then, we proposed two heuristics informed
by the domain that outperform standard heuristic methods
proposed in the past. In [4] we however considered only the
single robot case, whereas a more realistic scenario will have
a fleet of robots deployed to expedite the process. In this
paper, we therefore extend our former findings considering the
case where multiple robots concurrently operate in the same
vineyard. This problem is related to a problem known as team
orienteering and is obviously as hard as the single agent case.
From a practical perspective, there is an additional challenge.
Because vines are densely grown, each row in the vineyard is
narrow, and with multiple robots operating in the same block,
one should avoid having two robots traveling at the same time
along the same row in opposite directions, as there may not
be enough space.1

The rest of this paper is organized as follows. Related work
is discussed in section II and is followed by the formalization
of the problem we consider in section III. Motivated by the
intrinsic computational complexity, three different heuristics
are presented in section IV, where we also shortly discuss
a formerly developed method for this class of problems.

1While at this stage of the project we use a small research robot platform,
in a field deployment we anticipate that vehicles with a larger footprint will
be used and this aspect will therefore become relevant.

Section V compares the different solutions on various problem
instances based on data we collected from a commercial
vineyard, and shows that our proposed solutions favorably
scale with the size of the problem. Finally, conclusions and
anticipated future work are presented in section VI.

II. RELATED WORK

The reader unfamiliar with the challenges associated with
precision irrigation is referred to [5], [6] for general introduc-
tions to the topic. In the remainder of this section we focus
on computational issues related to the associated orienteering
problem and provide selected pointers to the growing sector
of robotics and automation in agriculture.

A. The Orienteering Problem

The problem considered in this paper is related to the
classic orienteering problem (OP) whereby one agent needs to
traverse a graph where each vertex has an associated reward
and each edge has a defined cost. The objective is to compute
a path maximizing the sum of rewards for visited vertices
while ensuring that the sum of costs for traversed edges does
not exceed a preassigned travel budget. If a vertex is visited
multiple times, the associated reward is counted only once,
whereas costs on edges traversed multiple times are counted in
full. In the rooted version of the problem, starting and ending
vertices are defined for the path, while the unrooted version
allows the path to start and end anywhere in the graph. The
OP was originally introduced in [7] and proven to be NP-hard
in [8]. In [9], the authors showed that orienteering belongs in
the APX-hard class. There exists numerous variants of the OP,
and we point the reader to [10] for a recent survey.

Two main approaches are followed to tackle this prob-
lem. The first utilizes exact methods using branch-and-bound
or branch-and-cut techniques, but applicability is limited to
problem instances with a small number of vertices in the
graph, i.e., less than 1,000 [11], [12]. To put this number into
context, the problem instances we consider may have 50,000
vertices or more. The second approach aims at developing
heuristics informed by domain specific knowledge, which may
work well if used in the correct context. These often rely on
assumptions made about the metric space to inform the path
creation mechanism. Examples include the Center-of-Gravity
heuristic [8] and our own Greedy Row and Greedy Partial-
Row algorithms [4]. Others rely on iterative and Monte Carlo
methods to discover solutions and improve them over time.
Many popular heuristics combine multiple techniques, such as
the Four-Phase Heuristic [13], in the hopes that the different
techniques will help avoid local maxima and steer closer to
the global maximum.

Approximation schemes do exist for the OP, but they are
cumbersome to implement. For the unrooted version of orien-
teering, a polylogarithmic run time 2-approximation algorithm
was given by [14]. For the rooted OP, [15] proposed the best
known approximation algorithm giving a (2+ε)-approximation
solution with a run time of nO(1/ε2), where n is the number of
vertices. A (1+ ε)-approximation scheme for the case of fully
connected planar graphs was given in [16], but the specific



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 3

requirements limit its usefulness and makes it inapplicable for
our purposes.

B. The Team Orienteering Problem

The team orienteering problem (TOP) is a variant of the
OP where multiple agents cooperate to collect the rewards,
while all agents are subject to some individually independent
budget constraint [17]. Evidently, this problem is as hard as
orienteering, and therefore subject to the same computational
challenges, and the cooperative nature of the problem calls for
the development of specialized heuristics. Some exact methods
have been created for the TOP, such as Branch and Price [18],
but they have limited scalability (up to around 500 vertices
[10]) which makes them impractical for our use. A literature
review did not reveal any approximation techniques for the
TOP, and therefore the only known way to achieve guaranteed
performance is by using exact algorithms.

Like the OP, many different types of heuristic methods
have been created to find solutions for the TOP. Most of
these heuristics were developed for the general case and are
therefore useful in many circumstances. Some are based on
randomization techniques that have seen extensive use in other
routing problems, such as Ant Colony Optimization [19] and
Simulated Annealing [20], which work by modifying the tours
with stochastic changes until improvements can no longer be
made. Multi-phase meta-heuristics are ever popular as well,
since they combine multiple techniques to build efficient paths.
These include Guided Local Search (GLS) [21] and Skewed
Variable Neighborhood Search [22], which show adequate
performance for small problems but do not scale well to larger
instances.

The problem we consider is also related to the multi-
robot motion coordination problem, particularly because of
our requirement to avoid having two or more robots traversing
the same row in opposite direction at the same time. Our
approach relies on considering the space/time composition to
resolve conflicts, and is related to methods that determine how
to schedule multiple robots along a preassigned set of routes
[23]. Multi-robot path planning remains intractable even when
restricted to problem instances defined on planar graphs, and
heuristics are used in this domain as well [24], [25], [26].

C. Robots in Agriculture

Robot use in agriculture is quickly expanding and has a
very promising future, with a multitude of diverse applications
gaining in popularity [27]. Remote sensing for information
gathering is a typical utilization, where Unmanned Aerial
Vehicles gather images from the sky of grow sites providing
unique insights not visible from the ground [28], [29]. Another
growing trend is the deployment of robots (usually on the
ground) to capture images of fruit on plants for use in yield
estimation [30], [31]. Fruit harvesting [32] and plant pruning
[33] are other utilizations of robots that interact directly with
the plants themselves. Still, some other robots are specifically
built to help with logistic problems, such as moving fruit bins
to and from human harvesters within fruit orchards to promote
optimal labor time usage [34]. Other robotic applications are

built on top of the already mechanized farm processes, such as
spraying of pesticides and fertilizer from tractors in minimal
travel distance and working time [35]. Regarding irrigation
optimization, literature review did not uncover any preceding
work related to robotic tools in this domain, except for our
own previous work [4].

III. PROBLEM DEFINITION

We start with a formal definition of the team orienteering
problem. Let G = (V,E) be a complete, undirected graph, let
r : V → R≥0 be a reward function defined over the vertices,
and let c : E → R≥0 be a cost function defined over the
edges. Starting from these two functions, a path in the graph
can be associated with a total cost and a total reward. The
total cost of a path is the sum of the costs of all edges along
the path, while the total reward is the sum of the rewards of
all vertices visited by the path. If a path visits the same vertex
multiple times, the reward is added just once, whereas the
cost of an edge is incurred every time the edge is traversed.
For a given integer M (number of team members) and given
positive real number TMAX (budget) we want to determine
M paths starting and ending at a preassigned vertex v ∈ V
that maximize the sum of the rewards of the paths subject to
the two following constraints: 1) each path has cost at most
TMAX ; 2) if a vertex is visited more than once by different
agents, the associated reward is collected only once.

In our recent work [4] we introduced a special class of
graphs called irrigation graphs that we indicated as IG(m,n),
where m and n are the number of rows and columns, re-
spectively. Irrigation graphs are planar graphs of degree at
most three that capture the motion constraints defined when
a robot navigates in a vineyard. Each vertex in the irrigation
graph represents the location of a water emitter (placed in
close proximity to a vine), and edges show possible motions
between emitters. The structure of the edges models the
motion constraints for a robot operating in a vineyard, i.e., row
swapping is possible at either end of the vineyard, but not in
the middle. Figure 2 shows the structure of these graphs (see
also Figure 1 and 3 for its relationship to vineyards structure).

...

...

...

...

. . .

Fig. 2: Structure of an irrigation graph IG(m,n). m is the
number of rows, while n is the number of vertices in each
row.

An irrigation graph can be formally defined as an undirected
graph IG(m,n) = (V,E), with each vertex v(i, j) ∈ V where



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 4

i is an integer 1 ≤ i ≤ m, j is an integer 1 ≤ j ≤ n, and a
set of edges E follows with the following properties:
• Each vertex of type v(i, j) with 1 < j < n is connected

to vertices v(i, j − 1) and v(i, j + 1).
• Each vertex of type v(i, 1) with 1 < i < m is connected

to vertices v(i− 1, 1), v(i+ 1, 1), and v(i, 2).
• Each vertex of type v(i, n) with 1 < i < m is connected

to vertices v(i− 1, n), v(i+ 1, n), and v(i, n− 1).
• One edge connects v(1, 1) and v(2, 1).
• One edge connects v(m, 1) and v(m− 1, 1).
• One edge connects v(1, n) and v(2, n).
• One edge connects v(m,n) and v(m− 1, n).

Without loss of generality, we assume m,n ≥ 3 2.
An irrigation graph can be augmented to include a cost

function c : E → R≥0 that gives each of its edges a cost
c(e) and a reward function r : V → R≥0 that gives each of
its vertices a reward r(i, j). With this augmentation, the OP
and TOP can be applied. Heuristics and algorithms for solving
orienteering often require complete graphs, and an irrigation
graph can obviously be extended into a complete graph by
adding the missing edges with costs set equal to the shortest
path in the original graph. The basic version of the problem
we consider in this paper is the following:

Irrigation Graph Team Orienteering Problem
(IGTOP): Let G be an irrigation graph IG(m,n),
v1, vn ∈ V be two of its vertices and c, r be cost and
reward functions on G. For a given constant TMAX ,
find M routes of maximum collective reward starting
at v1 and ending at vn of cost no greater than TMAX ,
and such that the reward for visiting a vertex is
collected only once if the vertex is visited multiple
times.

In [4] we proved that the special case of the IGTOP where
M = 1 (single agent) and c(e) is equal for all edges is NP-
hard. Consequently, the IGTOP is NP-hard as well. This proof
is evident by observing that irrigation graphs are BP3, that is
they are planar, bipartite (if one partitions the vertices between
those for which i+ j is even or odd), and have vertices with
degree of at most 3. In [36], it was shown that the Hamilton
circuit problem for graphs in BP3 is NP-Complete. Using
the classic reduction from the Hamilton circuit problem, the
decision Traveling Salesman Problem (TSP) on BP3 is also
NP-Complete. This is true in the case where all edge costs are
1 and we set the total cost to T = V , as well as in the general
case. Building an instance of the single agent orienteering
problem on a BP3 with reward function r(v) = 1 ∀v ∈ V
and constant cost function c(e) = k ∀e ∈ E, a solution having
total reward R = |V | and total cost C ≤ TMAX exists if and
only if the answer to the decision TSP on the same graph
with total cost T ≤ TMAX is yes. Therefore, the constant
cost orienteering problem on BP3 is NP-hard. Finally, this
is a special case of the version of this problem with non-
constant costs and rewards, defined earlier as the IGTOP, and
the IGTOP is therefore also NP-hard. Note that the assumption
of constant edge costs is motivated by the domain we consider,
because vines and water emitters are uniformly spaced, and

2The problem we present later on becomes trivial if this is not the case

terrain is flat. Additionally, we make the assumption that all
robots are homogeneous; that is, they perform equally well in
the same conditions.

As mentioned in the introduction, when solving the IGTOP
problem there exists the possibility that a solution may cause
two or more robots to collide when it is implemented. This is
because the spacing of trellises and vines may be too narrow
to allow two robots to traverse the same row in opposite
directions. Traveling in opposite directions along the vertical
columns at either end of the graph is allowed, however,
because those sections are typically much larger. The heuristic
we will propose, therefore, will not only solve the IGTOP
problem defined above, but also ensure that no collisions
occur along the horizontal rows. These additional constraints,
however, are problem specific and not enforced by the other
general purpose heuristics formerly proposed in literature.

IV. HEURISTICS FOR THE IGTOP PROBLEM

The following contains descriptions of our proposed heuris-
tic algorithms. Note that each of them is parameter-free - they
take as input only the original IGTOP problem containing the
irrigation graph, cost function, reward function, start vertex,
end vertex, and budgets for each agent - and therefore do not
require any tuning to produce good results. The algorithm we
use to benchmark results against is also described, but unlike
our proposed algorithms, it requires tuning parameters.

As previously mentioned. exact solution methods for solv-
ing the generic TOP do exist, and these are usually formulated
similarly to the linear-integer program given in [10]. In these
solvers, the decision variables are a vector of binary values
corresponding to edges in the graph, where a value of 1
determines that the edge is included in the route. Our proposed
methods, on the other hand, output a sequence of vertices
as a route for each agent, where each successive vertex is
immediately adjacent to its predecessor in the route.

A. Single Agent Greedy Partial Row Heuristic

The Greedy Partial Row Heuristic algorithm (GPR) we
proposed in [4] only solves the single agent case, but is used
as a building block for the various domain-specific heuristics
we propose to solve the IGTOP problem. We therefore shortly
summarize the GPR algorithm in the following, and refer the
reader to [4] for a full discussion. Algorithm 1 shows the
pseudocode.

GPR precomputes total reward values for completely
traversing each row, and cumulative reward values for partially
traversing rows from either side. Partial rewards are obtained
entering a row, visiting a certain number of consecutive
vertices into the row, then turning around and exiting from
whence it came, leaving some vertices in the row unvisited.
A feasible vertex is a vertex such that there is enough budget
to visit the vertex and then return to the ending location vn.
Initially, all vertices are marked as feasible. Then, the main
loop is performed where vertices, rows, or partial rows are
added to the tour until there are no longer any feasible vertices
for the remaining budget, at which point the tour concludes
by going to vn. When choosing the next row or partial row to



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 5

1: Compute cumulative rewards from left and right
2: Mark all vertices as feasible
3: while feasible vertices exist do
4: Compute full-row heuristics
5: Find best full-row
6: Compute partial-row heuristics for current side
7: Find best partial-row
8: if best full-row is better then
9: if feasible then

10: Append to tour
11: Mark as unfeasible
12: if best partial-row is better or best full-row is unfeasible

then
13: if feasible then
14: Append to tour
15: Mark as unfeasible
16: if both unfeasible then
17: Mark both as unfeasible
18: Append path from current vertex to ending vertex to tour
19: return tour
Algorithm 1: Greedy Partial-Row Heuristic (GPR)

visit, the heuristic scores for all feasible paths are computed
by dividing the potential rewards with the potential costs. In
the case of full rows, the full row reward is divided by the cost
to enter the row plus the cost to traverse the row. In the case of
partial rows, the cumulative reward at each vertex within rows
is divided by the cost to enter the row plus the cost to partially
traverse the row up to the vertex plus the cost to turn around
and exit the row on the same side it entered. After heuristics
are computed, the best full row and partial row are chosen,
then compared to each other. The better of the two is then
added to the tour if it is feasible, and marked as unfeasible
so its vertices are no longer considered. If the better one is
not feasible, it is marked as such and (if feasible) the other
is added to the tour and marked as unfeasible. If both are
not feasible, then they are both marked as such. Each loop
iteration will mark more vertices as unfeasible until no more
are left, thus ensuring the algorithm eventually terminates.

The complexity of this algorithm is O(m2n) where m
is the number of rows and n is number of vines per row.
This complexity is derived from the fact that the algorithm
is one large while-loop, where the loop iterates at most mn
times (once for each vertex) and each iteration makes m
heuristic calculations. In [4] we experimentally demonstrated
that this heuristic is the best among those we introduced for
irrigation graphs, and we also showed that it outperforms
general purpose methods proposed in the past. Our various
multi-agent extensions to solve IGTOP instances are therefore
built on top of the GPR method.

B. Vineyard Sectioning

The simplest method to solve an instance of the IGTOP
problem consists in splitting the graph into a set of M disjoint
sections and assign one agent to each section. Each section is
defined as a set of contiguous rows. This is extremely simple to
implement and it can be very effective in some circumstances.
For the case of IGTOP, each of the M agents is assigned its
own section and solves the single-agent orienteering problem

using the GPR algorithm. To preserve spatial cost information
about navigation from the start location and to the end location,
each instance of GPR receives a copy of the original irrigation
graph, however rewards for all vertices not to be visited
are zeroed out (marked unfeasible), and thus the agent only
builds tours spanning its assigned block of rows. While it
is possible to split the vineyard into M equal sections so
that each agent has the same amount of area to service,
this is obviously sub-optimal when the budget is too small
for all vertices to be visited, as some sections will have
more rewards to collect than others. To prevent agents from
spending budget on low reward regions, blocks of rows are
split by percentage of overall reward. Each agent will have
a certain percentage of overall budget to expend, so it is
assigned to a contiguous block of rows with approximately
the same percentage of overall reward. Dividing the vineyard
in this fashion normalizes the agents potential reward with
its budget to utilize it more effectively. Because only one
agent is assigned to each section, and each section contains
only complete rows that are not assigned to any other section,
collisions are avoided by construction.

This algorithm, called Vineyard Sectioning, is sketched in
algorithm 2. The overall complexity of solving IGTOP using
this technique is O(M ·m2n), due to the fact that GPR is run
once for every agent.

1: Compute rewardtotal of vineyard
2: j = 1
3: for M agents do
4: i = j
5: sum = 0
6: percentM = budgetM/budgettotal
7: while sum/rewardtotal < percentM do
8: j = j + 1
9: sum = sum+ rewardj

10: temprewardmap = rewardmap
11: for all rows not between i and j do
12: temprewardmaprow = 0
13: Run GPR(temprewardmap) for current agent

Algorithm 2: Vineyard Sectioning

C. Series GPR

Instead of preliminarily sectioning the vineyard in M zones,
an alternative strategy is to sequentially solve the single-agent
orienteering multiple times on the whole irrigation graph,
zeroing out the rewards collected by each agent, so that they
are no longer considered by the following ones. Algorithm
3 shows how this is implemented. Perhaps more primitive
than the vineyard sectioning approach, this method forgoes
preplanning the area of visitation for each agent and instead
allows them to freely roam collecting the highest available
rewards. GPR is run M consecutive times, and after each run
visited vertices and rows have their rewards set to zero so
that every run afterwards ignores these areas in its search. To
properly avoid collisions within rows, GPR is modified (see
algorithm 4) to track where and when previous robots have
visited a vertex by taking as input a conflict map containing



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 6

every vertex with times visited and passing this map as output
filled with the old tours’ and new tour’s information.

Similarly to vineyard sectioning, running GPR in series will
result in an overall complexity of O(M · m2n), giving this
algorithm a linear complexity with respect to the number of
agents.

1: initialize conflictmap
2: for k agents do
3: Run GPRwithAvoidance(rewardmap, conflictmap)
4: for all visited vertices do
5: rewardmapvertex = 0

Algorithm 3: Series GPR

1: Compute cumulative rewards from left and right
2: while tour not concluded do
3: Reset conflictmap and vertex feasibility to input
4: tour = ∅
5: while feasible vertices exist do
6: Compute full-row and partial-row heuristics for current

side
7: Compute time for visiting full-rows and partial-rows
8: Find best full-row without time conflicts
9: Find best partial-row without time conflicts

10: if best full-row or best partial-row not empty then
11: if either is unfeasible then
12: Mark as unfeasible where appropriate
13: if best full-row is better and feasible then
14: Append to tour
15: Add vertices and times to conflictmap
16: Mark as unfeasible
17: else if best partial-row is feasible then
18: Append to tour
19: Add vertices and times to conflictmap
20: Mark as unfeasible
21: else
22: Tell tour to wait 1 unit
23: if exists path to end vertex without time confilct then
24: Append path from current to end vertex to tour
25: Add vertices and times to conflictmap
26: return tour, conflictmap
27: else
28: Tell tour to save more time for the end

Algorithm 4: GPRwithAvoidance

D. Parallel GPR

Rather than plan the route for each agent independently,
planning each route in parallel allows agents to take advantage
of their current location when choosing who will cover the
next best row or partial row. To apply this idea, an internal
loop is added to GPR, such that heuristics are computed to
reveal the best row and best partial row for each agent, which
are kept track of in a list of candidates. The path with the
greatest heuristic value is tested for feasibility as well as
time conflicts, and if feasible and conflict free it is added to
the corresponding agent’s tour then marked as unfeasible for
future iterations. However, if it is unfeasible then the next
best candidate is tested and the unfeasible row/partial row and
agent combination is added to a blacklist where it will be
passed over for future iterations. Once a row or partial row

is blacklisted for all agents, then it is marked unfeasible and
will no longer be considered. Like GPR with avoidance, the
algorithm will continue until all points of interest are marked
unfeasible, and then each tour will be concluded at the ending
vertex if there are no time conflicts.

The complexity of this algorithm is O(M · m2n), again
linear with respect to the number of agents. The complexity is
derived from the fact that a new internal loop is added to the
original GPR algorithm that computes heuristics for each agent
at every iteration. Thus, it ends up with the same complexity
as Series GPR. Pseudocode is shown in Algorithm 5.

1: Compute cumulative rewards from left and right
2: while all tours not concluded do
3: Reset conflictmap, blacklist, and vertex feasibility
4: All tours = ∅
5: while feasible vertices exist do
6: Clear candidates
7: for all agentM do
8: Compute heuristics of full-row and partial-row for

current side
9: Compute visiting time of full-rows and partial-rows

10: for all full-rows without time conflicts do
11: Find best full-row not in blacklist for agentM
12: Add to candidates
13: for all partial-rows without time conflicts do
14: Find best partial-row not in blacklist for agentM
15: Add to candidates
16: if nothing added to candidates for agentM then
17: Tell tourM to wait 1 unit
18: while Candidates is not empty do
19: Find candidate with greatest heuristic
20: if best candidate is feasible then
21: Append to tourM
22: Add vertices and times to conflictmap
23: Mark as unfeasible
24: else
25: Add to blacklist
26: Mark vertices blacklisted by all agents as unfeasible
27: for all agentM do
28: if exists path to end vertex without time conflict then
29: Append path to tourM
30: Add vertices and times to conflictmap
31: else
32: Tell tourM to save more time for the end
33: if all tours at ending vertex then
34: return tours, conflictmap

Algorithm 5: Parallel GPR

E. Guided Local Search

To benchmark our algorithms, we use the Guided Local
Search (GLS) Metaheuristic [21], which builds an algorithm
for solving TOP in the general case using a composition of
several local search heuristics. GLS was chosen because it
is easily extendable from the general TOP case with fully
connected graphs to the case we study here with irrigation
graphs. Initial construction is performed by creating M tours
from the start location to the furthest possible vertices from the
start and end, such that each tour visits only one vertex other
than the start and finish. Next, cheapest insertion is performed
on each tour until no longer possible, and then the algorithm
enters a series of loops. These loops are iterated until the



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 7

solution can no longer be improved (for defined parameters),
and within them the following local search heuristics are per-
formed: swap which trades vertices between tours, TSP which
performs a 2-opt cost improvement on individual tours, move
which moves vertices between tours to group together budget
left, insert which adds unvisited vertices to tours, replace
which swaps a visited vertex for an unvisited one, and disturb
which removes some number of vertices from the beginning
or end of each tour. The guided local search metaheuristics are
used in the replace and TSP heuristics to improve results. One
important aspect to notice is that GLS was not designed around
IGTOP and therefore does not account for possible collisions
within rows. Additionally, unlike our proposed algorithms,
GLS has numerous parameters that should be tuned for good
performance. The complexity of this algorithm and others
similar to it is O(TMAX · k2log2(M · k)) where k is the
number of vertices in the graph, i.e., k = mn in our case.
The complexity is then significantly higher than our heuristics.
Note also the linear dependency on TMAX .

V. EXPERIMENTAL COMPARISON

The algorithms presented in the previous section were tested
on a series of simulated routing problems derived from a
vineyard block at a commercial operation in central California.
The block was rectangular in shape with m = 275 rows
of n = 214 columns (vines) per row (see Figure 3). This
generates problem instances with 58,850 vertices in the graph.

The reward r(v) for each vertex v was defined as r(v) =
|T −m(v)|, where T is a constant indicating the desired soil
moisture in the vineyard (provided by a human expert), and
m(v) is the soil moisture at vertex v. This reward is the
difference between desired moisture and actual moisture, thus
revealing how under-watered or over-watered a vine is. Due to
the large size of the ranch, soil moisture data was sampled at
discrete locations within the vineyard using a GPS equipped
manual probe (Campbell Scientific Hydrosense HS2P). From
the finite set of samples, a soil moisture map for the whole
block was obtained using Kriging [37] for interpolation. Figure
4 shows one example of a reward map created from collected
data.

Over the course of summer 2018, data was collected every
two weeks from this vineyard and used to produce ten soil
moisture maps. These moisture maps were then used to test
the algorithms described in section IV and the results were
averaged across each reward map. Where GLS is used, the
values for tuning parameters used were those suggested in
[21].

The first test compared the three proposed algorithms
(Vineyard Sectioning, Series GPR, Parallel GPR) with the
GLS metaheuristic discussed earlier. Here, the irrigation graph
tested was scaled-down to 300 vertices (12×25) because of
computational constraints using GLS. For a thorough compar-
ison, the number of agents and total budget (budget for all
agents combined) was varied. In cases where more than one
agent was considered, all agents had an equal budget. For the
three proposed algorithms, no collisions occurred. This result
is expected, as they were designed to avoid building tours with

Fig. 3: An aerial view of the vineyard block used to collect
data for our experiments and the locations where soil moisture
data was collected (red pins).

collisions. GLS, on the other hand, did produce tours with
some collisions, but these were very uncommon, occurring in
0.92% of cases. While collisions were expected using GLS,
the small number detected is somewhat surprising since GLS
has no built-in mechanism for avoiding such circumstances.
Nonetheless, our heuristics are guaranteed to produce collision
free solutions irrespective of the graph size and reward map,
and the same is not true for GLS. Cases where GLS produced
collisions were omitted when calculating the average results
shown.

Figure 5 shows how the number of agents used to solve
a IGTOP effects the overall outcome. Each data point cor-
responds to ten runs (one for each moisture map, except for
GLS when a collision occurs) of the associated algorithm with
the specified total budget and number of agents, where the
fraction of total available reward collected is averaged to a
single value. In each instance run, all agents shared the same
total budget equal to Tmax/M . For example, for a total budget
of 100, two agents have 50 each, 4 have 25 each, etc. These
results show that, for irrigation graphs, one agent with a larger



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 8

Fig. 4: A reward map compiled using data from the vineyard
in Fig. 3.

budget would be more impactful than multiple agents with
smaller budgets. This is expected because with a single robot
no coordination is necessary. However, this is unfeasible in
practice; it is technically not viable to deploy a single robot
with autonomy equal to the sum of the autonomies of all M
robots. Additionally, all three proposed algorithms perform
better than GLS in most cases, with the exception of relatively
low budgets, where GLS performs as well as the others.

Figure 6 shows the case where 5 agents are used and the
combined budget is varied. Each data point is again the average
of the results on ten runs with different moisture maps. GLS
is able to collect the most reward at smaller budgets, beating
out all three proposed algorithms, but as the budget increases
it eventually becomes the worst performing algorithm. The
performance of the three proposed algorithms shows similarity,
with Series GPR and Parallel GPR trading off for the highest
collected reward while Vineyard Sectioning lags behind. There
is a maximum difference of 8.83% in collected reward between
the three algorithms when TMAX = 342. When GLS is
considered, the gap between the top performer and GLS
maximizes at 32.78% when TMAX = 342.

The plot shown in figure 7 highlights inefficiencies in budget
usage for each algorithm. Residual budget is the unused budget
after the execution of the algorithm, meaning the algorithm
cannot find a way utilize the rest of the budget to visit
new vertices and increase the total reward. Unused budget
emerges because the robots need to return to the deployment
vertex before they can spend all their budget. An efficient
algorithm should have a low residual as the fraction of total

Fig. 5: Number of agents vs average fraction of total reward
collected for fixed budgets on a 12×25 graph. Included are
error bars showing the maximum and minimum of reward at
each tested budget. Note that some lines and error bars are
overlapping in some intervals.

reward collected increases, with minimal spikes (signaling
where graph structure prevents efficient use of budget), and
a high reward ceiling at 1, where the residual begins to
increase toward infinity. Series GPR and parallel GPR both
have low residuals but high rewards ceilings, showing that they
are efficient in path planning for irrigation graphs. Vineyard
sectioning has high value residuals across the spectrum, which
is the result of splitting the vineyard into blocks because some
agents will be caged and unable to use their entire budgets,
but also shows the ability to reach high fractions of reward
collected. GLS tends to have a low residual budget, however
it also does not do well collecting reward at high budgets, so it
abruptly stops at its reward ceiling and is never able to collect
all available rewards.

Having assessed the performance of our proposed heuristics
against the known GLS used as a baseline, the next set of tests
compares the three proposed algorithms to each other on the
full sized irrigation graph with 58,850 vertices (275×214).
Again, both the number of agents and total budget were vari-
able parameters and collected rewards were averaged across
all ten moisture maps so that the overall effectiveness of each
algorithm could be explored. Moreover, no collisions were
detected between robots, because the three heuristics ensure
that no collisions will occur.

Figure 8 shows Series GPR and Parallel GPR are very



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 9

Fig. 6: Budget vs average fraction of total reward collected for
5 agents on a 12×25 graph. Included are error bars showing
the maximum and minimum of reward at each tested budget.
Note that some lines and error bars are overlapping in some
intervals.

Fig. 7: Average fraction of total reward collected vs average
leftover budget after paths are built for 5 agents on a 12×25
graph. Note that some lines are overlapping in some intervals.

close for much of the tested number of agents, while Vineyard
Sectioning is considerably less efficient. The exception to this
is when the budget Tmax = 29700 and there are between 10
and 30 agents. Interestingly, there is a small but noticeable gap
between the Series and Parallel algorithms, with Series GPR
edging out the other for many of the experiments.

Figure 9 reveals that with the full sized graph and 50 agents,
Series GPR and Parallel GPR perform very similarly. However,
unlike in figure 6, Series GPR is the top performer more
often than Parallel GPR. Vineyard sectioning also performed
very well, however it never equals the reward collection
performance of the other two algorithms. Specifically, with
a budget of 88,550, both Series GPR and Parallel GPR can
collect 100% of the rewards for all 10 moisture maps, but

Fig. 8: Number of agents vs average fraction of total reward
collected for fixed budgets on a 275×214 graph. Included are
error bars showing the maximum and minimum of reward at
each tested budget. Note that some lines and error bars are
overlapping in some intervals.

Vineyard Sectioning is only able to collect on average 90.4%
of the rewards. The results are similar in cases with any
number of agents (1 through 100 agents tested), with reward
collected equal for all algorithms when only one agent is
considered but diverging as more agents are added.

The residuals in figure 10 show an interesting pattern
emerge for the Vineyard Sectioning algorithm. As the com-
bined budget increases, each agent has a larger budget to
expend, however after a certain point much of the increased
budget is wasted. Again, this is likely due to the compart-
mentalization of each agent, i.e. when they collect all the
rewards in their area there is nothing left for them to do so
they end their tour. Because some sections are larger than
others and all the agents have the same budget, larger sections
will have portions unexplored unless the budgets are increased
dramatically beyond what is needed for smaller sections, so
agents servicing smaller sections will have lots of excess.
Additionally, when Series GPR and Parallel GPR collect all of
their rewards, the residuals shoot up because there is nothing
left for the agents to do, so extra budget goes unused. Again,
results look similar for all numbers of agents tested.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of routing multiple
robots within a vineyard - where movement is limited when a



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 10

Fig. 9: Budget vs average fraction of total reward collected
for 50 agents on a 275×214 graph. Included are error bars
showing the maximum and minimum of reward at each tested
budget. Note that some lines and error bars are overlapping in
some intervals.

Fig. 10: Average fraction of total reward collected vs average
leftover budget after paths are built for 50 agents on a
275×214 graph.

row is entered - for the application of precision irrigation.
Recognizing this problem as NP-hard, we presented three
parameter-free evolutions of the single robot routing algorithm
we recently developed and extend its capabilities for teams
of robots. These algorithms were compared with the GLS
heuristic, a method formerly proposed. All three of the heuris-
tics significantly outperformed GLS in computation time,
performed as well as or better than GLS in reward collected
for most cases. The proposed Series GPR was quantitatively
shown to provide the best performance on large scale graphs,
followed by Parallel GPR and the Vineyard Sectioning.

Future work in this domain will consider navigational and
emitter adjustment uncertainties, heterogeneous agents (i.e.
humans and robots), simultaneous reward collection and sam-

pling, and possible improvements to the proposed algorithms.
Another interesting problem is in studying how to possibly
place a set of different start and ending points (i.e. deployment
locations and recharging stations). Moreover, we will study
the effect of different techniques to construct global moisture
maps from a finite set of samples. Efforts to deploy a fully
working prototype in the field are also ongoing.

ACKNOWLEDGMENTS

This paper extends a preliminary version appeared in [38].
We gratefully acknowledge Luis Sanchez and Nick Dokoo-
zlian from E&J Gallo Winery for having granted access to
their vineyards for data collection, and for the valuable and in-
formation provided during this project. We thank Carlos Diaz
Alvarenga, Jose Manuel Gonzalez, Christine Breckenridge,
Jonathan Garache, and Andres Torres Garcia for assisting with
data collection in the field.

REFERENCES

[1] G. Schaible and M. Aillery, Challenges for US Irrigated Agriculture in
the Face of Emerging Demands and Climate Change. Elsevier, 2017,
ch. Competition for Water Resources 2.1.1, pp. 44–79.

[2] D. V. Gealy, S. McKinley, M. Gou, L. Miller, S. Vougioukas, J. Viers,
S. Carpin, and K. Goldberg, “Co-robotic device for automated tuning
of emitters to enable precision irrigation,” in Proceedings of the IEEE
Conference on Automation Science and Engineering, 2016, pp. 922–927.

[3] R. Berenstein, R. Fox, S. McKinley, S. Carpin, and K. Goldberg,
“Robustly adjusting indoor drip irrigation emitters with the toyota hsr
robot,” in Proceedings of the IEEE International Conference on Robotics
and Automation, 2018, pp. 2236–2243.

[4] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Routing
algorithms for robot assisted precision irrigation,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2018, pp.
2221–2228.

[5] R. Smith and J. Baillie, “Defining precision irrigation: a new ap-
proachj to irrigation management,” in Proceedings of the Irrigation and
Drainage Conference. Irrigation Australia Ltd, 2009.

[6] R. González Perea, A. Daccache, J. A. Rodrı́guez Dı́az, E. Cama-
cho Poyato, and J. W. Knox, “Modelling impacts of precision irrigation
on crop yield and in-field water management,” Precision Agriculture,
vol. 19, no. 3, pp. 497–512, Jun 2018.

[7] T. Tsiligirides, “Heuristic methods applied to orienteering,” Journal of
Operational Research Society, vol. 35, no. 9, pp. 797–809, 1984.

[8] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics, vol. 34, pp. 307–318, 1987.

[9] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” SIAM Journal on Computing, vol. 37, no. 2, pp. 653–670,
2007.

[10] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches, and applications,”
European Journal of Operational Research, vol. 255, no. 2, pp. 315–332,
2016.

[11] M. Fischetti, J. J. S. González, and P. Toth, “Solving the orienteering
problem through branch-and-cut,” Journal on Computing, vol. 10, no. 8,
pp. 133–148, 1998.

[12] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, pp. 1–10, 2011.

[13] R. Ramesh and K. M. Brown, “An efficient four-phase heuristic for the
generalized orienteering problem,” Computers and Operations Research,
vol. 18, no. 2, pp. 151–165, 1991.

[14] N. Garg, “Saving an epsilon: A 2-approximation for the k-mst problem
in graphs,” in Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, 2005, pp. 396–402.

[15] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orien-
teering and related problems,” ACM Transactions on Algorithms, vol. 8,
no. 3, 2012.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (SUBMITTED) 11

[16] K. Chen and S. Har-Peled, “The orienteering problem in the plane
revisited,” in Proceedings of the twenty-second annual symposium on
Computational geometry, 2006, pp. 247–254.

[17] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering
problem,” European Journal of Operational Research, vol. 88, pp. 464–
474, 1996.

[18] S. Boussier, D. Feillet, and M. Gendreau, “An exact algorithm for team
orienteering problems,” 4OR, vol. 5, no. 3, pp. 211–230, 2007.

[19] L. Ke, C. Archetti, and Z. Feng, “Ants can solve the team orienteering
problem,” Computers and Industrial Engineering, vol. 54, pp. 648–665,
2008.

[20] S.-W. Lin, “Solving the team orienteering problem using effective multi-
start simulated annealing,” Applied Soft Computing, vol. 13, pp. 1064–
1073, 2013.

[21] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden,
“A guided local search metaheuristic for the team orienteering problem,”
European Journal of Operational Research, vol. 196, pp. 118–127, 2009.

[22] ——, “Metaheuristics for tourist trip planning,” in Metaheuristics in the
Service Industry, K. Sörensen, M. Sevaux, W. Habenicht, and M. J.
Geiger, Eds. Springer Berlin Heidelberg, 2009, vol. 624, pp. 15–31.

[23] L. E. Parker, “Path planning and motion coordination in multiple robot
teams,” in Encyclopedia of Complexity and System Science. Springer,
2009.

[24] J. Banfi, N. Basilico, and F. Amigoni, “Intractability of time-optimal
multirobot path planning on 2d grid graphs with holes,” IEEE Robotics
and Automation Letters, vol. 2, no. 4, pp. 1941–1947, 2017.

[25] J. Yu and M. LaValle, “Optimal multiroot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[26] J. Yu, “Intractability of optimal multirobot path planning on planar
graphs,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 33–40,
2016.

[27] S. Vougioukas, “Agricultural robotics,” Annual review of control,
robotics, and autonomous systems, vol. 2, pp. 339–364, 2019.

[28] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz,
and J. Valente, “Aerial remote sensing in agriculture: A practical
approach to aera coverage and path planning for fleets of mini aerial
robots,” Journal of Field Robotics, vol. 28, no. 5, pp. 677–689, 2011.

[29] Z. Li and V. Isler, “Large scale image mosaic construction for agricul-
tural applications,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 295–302, Jan. 2016.

[30] S. Bargoti and J. P. Underwood, “Image segmentation for fruit detection
and yield estimation in apple orchards,” Journal of Field Robotics,
vol. 34, no. 6, pp. 1039–1060, 2017.

[31] G. Riggio, C. Fantuzzi, and C. Secchi, “A low-cost navigation strategy
for yield estimation in vineyards,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2018, pp. 2200–2205.

[32] A. Silwal, J. R. Davidson, M. Karkee, C. Mo, Q. Zhang, and K. Lewis,
“Design, integration, and field evaluation of a robotic apple harvester,”
Journal of Field Robotics, vol. 34, no. 6, Sep. 2017.

[33] T. Botterill, S. Paulin, R. Green, S. Williams, J. Lin, V. Saxton, S. Mills,
X. Chen, and S. Corbett-Davies, “A robot system for pruning grape
vines,” Journal of Field Robotics, vol. 34, no. 6, pp. 1100–1122, 2017.

[34] Y. Zhang, Y. Ye, Z. Wang, M. E. Taylor, G. A. Hollinger, and Q. Zhang,
“Intelligent in-orchard bin-managing system for tree fruit production,” in
IEEE International Conference on Robotics and Automation Workshop
on Robotics in Agriculture, 2015.

[35] D. Bochtis, H. Griepentrog, S. Vougioukas, P. Busato, R. Berruto,
and K. Zhou, “Route planning for orchard operations,” Computers and
Electronics in Agriculture, vol. 113, pp. 51–60, 2015.

[36] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, “Hamilton paths in
grid graphs,” SIAM Journal on Computing, vol. 11, no. 4, pp. 676–686,
Nov. 1982.

[37] M. A. Oliver and R. Webster, “Kriging: A method of interpolation for
geographical information systems,” International Journal of Geograph-
ical Information Systems, vol. 4, no. 3, pp. 313–332, 1990.

[38] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in Proceedings
of the IEEE Conference on Automation Science and Engineering, 2018,
pp. 7–14.


