
1

Motion Planning Using
Adaptive Random Walks

Stefano Carpin Gianluigi Pillonetto1

Abstract—We propose a novel single-shot motion planning algo-
rithm based on adaptive random walks. The proposed algorithm
turns out to be simple to implement and the solution it produces
can be easily and efficiently optimized. Furthermore the algorithm
can incorporate adaptive components. So the developer is not re-
quired to specify all the parameters of the random distributions
involved, and the algorithm itself can adapt to the environment it
is moving in. Proofs of the theoretical soundness of the algorithm
are provided as well as implementation details. Numerical com-
parisons with well known algorithms illustrate its effectiveness.

Index Terms— Holonomic path planning, Adaptive sampling,
Stochastic processes

I. INTRODUCTION

In the last years the problem of robot motion planning re-
ceived even more attention as a consequence of two possibly
synergistic events. Starting from the seminal work presented in
[1], there has been a massive introduction of randomized mo-
tion planners (see for example [2],[3],[4],[5]) which allowed to
effectively face problems in high dimensional spaces, not al-
ways solvable by formerly developed planners. Moreover, mo-
tion planners are currently used for a number of applications
that are beyond traditional robotics (see [6]). In fact, the con-
tinuous flow of innovative tools for efficiently searching config-
uration state spaces confirms that as efficient planners are intro-
duced, the frontier of possible applications is also being pushed
further. For example, we cite problems like multi-robot motion
planning,

digital characters motion generation, or protein folding and
ligand binding. They exhibit problem instances with tenths or
even hundreds of degrees of freedom and are currently tackled
by using randomized motion planners.

Recently there has also been an impulse to study algorithms
not only probabilistic complete, but also resolution complete
and to speculate on a possible turn back to efficient determinis-
tic approaches ([7, 8]). However the randomized approach ap-
pears to be the current main stream of research in motion plan-
ning.

In this context we have developed a new motion planner
based on random walks. In the past random walks have been
sporadicly used and only in particular situations, for example
to escape local minima in potential field methods ([9]). Instead,
our approach relies entirely on this concept. Numerical results
illustrate that difficult problems can be efficiently solved. The
algorithm belongs to the class of single-shot motion planning
algorithms. This means that it does not preprocess the environ-
ment to subsequently solve many queries. Instead, it is well
suited for single queries. In addition, the planner is well suited
for the introduction of adaptive components in order to let it ad-
just its random components to better address the environment

1Corresponding author. Stefano Carpin is with the School of Engineering and
Science of the International University of Bremen, Germany (carpin@ieee.org).
Gianluigi Pillonetto is with the Department of Information Engineering of the
University of Padova, Italy (giapi@dei.unipd.it).

where it moves.
The paper is organized as follows. Section II formally intro-
duces the problem and illustrates the algorithm. The theoretical
soundness of the algorithm is discussed in III, while section IV
provides details about simulations and numerical results. Con-
clusions are offered in section V.

II. THE RANDOM WALK ALGORITHM

The problem of robot motion planning is usually dealt with
by using the configuration space approach ([10]). This means
that a search is conducted in the configuration space of the de-
grees of freedom in order to plan a motion. Every point of this
space corresponds to a placement of the robot in its physical
workspace. As not all the points correspond to valid placements
of the robot in its workspace, the configuration space is parti-
tioned into two subsets, the free configuration space and the
obstacle configuration space. This approach has proved itself
to be highly effective as it turns out that often in real applica-
tions the configuration space is a smooth manifold ([11]). Thus,
it is possible to address a wide variety of problems using the
same approach by designing algorithms which search for paths
in these well characterized spaces.
One instance of the robot motion planning problem can be
formulated as follows. Given an n-dimensional configuration
space C, let Cfree be the subset of free configurations of C.
Let xstart ∈ Cfree and let Xgoal be a target subset contained
in Cfree whose Lebesgue measure is strictly positive. The task
is to find a path connecting xstart with Xgoal, i.e. a continu-
ous function f : [0, 1] → Cfree such that f(0) = xstart and
f(1) ∈ Xgoal. It has to be outlined that this problem belongs
to the PSPACE-hard complexity class ([12]). This justifies the
massive use of approximated and randomized algorithms.

Many randomized planners which have been so far devel-
oped draw independent samples from an a priori fixed proba-
bility density function whose support is the entire configuration
space. The aim is then to build a graph or a tree which cap-
tures its connectivity ([1], [13]). Instead, the algorithm we pro-
pose tries to find a solution by building a random walk growing
from xstart. At every step a new sample is generated in the
neighborhood of the last point in accordance with a Gaussian
distribution2. If the segment connecting them lies entirely in
Cfree, the point becomes the last point in the walk, otherwise
it is discarded. The basic version of the algorithm is illustrated
in algorithm 1. The vk used in line 5 indicates a n-dimensional
Gaussian vector with zero−mean vector and covariance matrix
Σk. We also denote with ”Update” the function which makes
the algorithm adaptive by computing Σk from a certain number
of last accepted samples, which in the algorithm is indicated
as M . As the search of the path is carried out in a possibly
high dimensional configuration space whose topological shape
is usually unknown, it can be non trivial to fix the values of Σk.
For this reason the algorithm starts with an arbitrary covariance

2While using both uniform and Gaussian distributions yields effective plan-
ners, we will concentrate our discussion exclusively on Gaussian distributions.
This because, in addition of exhibiting better performance and being more
suited for adaptivity, it allows easy and elegant proofs of the probabilistic con-
vergence of the algorithm (see section III).

2

Algorithm 1 Basic Random Walk Based Motion Planner
1: k ← 0
2: xk ← xstart

3: Σ0 ← Σinit

4: while NOT xk ∈ Xgoal do
5: Generate a new sample s← xk + vk

6: if the segment connecting xk and s lies entirely in Cfree

then
7: k ← k + 1
8: xk ← s
9: Σk ← Update(xk, xk−1, xk−2, . . . , xk−H)

10: else
11: discard the sample s

matrix Σ0 and during the computation a sequence of covari-
ance matrices is generated through the ”Update” function on
the basis of the evolution of the computation. For example, Σk

could be the covariance matrix of the last H accepted samples
or a similar function of the recent history of the random walk
being built. As it will be shown in section III the conditions
required for the probabilistic convergence of the algorithm are
very mild, so that a wide variety of update rules can be used
while setting the values. Specific choices will be discussed in
section IV. The aim of the update step is to introduce adaptivity
in the sampling distribution. In this way the algorithm is able to
modulate the sampling process in order to address the specific
shape of the region of the environment that the random walk is
currently exploring. One important aspect of the random walk
algorithm is that the time spent to generate a new sample does
not depend on the size of the previously generated samples set,
provided that the update of the covariance matrix can be done
in constant time. This implies that the overall time spent to gen-
erate the samples is linear in the number of samples. This for
example always holds if we process a fixed number of the sam-
ples accepted up to that point. This is different from most of
the formerly developed algorithms, like probabilistic roadmaps
(PRM) and rapidly exploring random trees (RRT), where the
performance is worst than linear in the number of generated
samples (see however [14] for a version of the RRT algorithm
where the time needed to generate a new sample is logarithmic
in the number of already generated samples). A natural tech-
nique to speed up the search process is to let the algorithm per-
form a bidirectional search. This means that two random walks
are expanded, one growing from the start point and the other
from the goal region, periodically verifying if it is possible to
join them. In order to avoid the examination of all the samples
generated, the connect trial is performed only between the last
two generated points in the two walks. We have chosen this
approach to keep constant the time needed to generate a new
sample. As already observed, the expedient of bidirectional
search allows a substantial gain in the performance (see [13]).
Extensive experiments outlined that even this kind of bidirec-
tional search improves the performance over the simple single
direction exploration. In addition to this, further opportunism
can be introduced by letting the algorithm to periodically try to
connect the last sample with the goal point (or the start point if
in a bidirectional search we consider the walk growing from the

goal region). Another strategy we have designed to improve the
performance of the algorithm consists of incorporating a greedy
component. When the segment connecting xk with new gener-
ated sample s does not entirely lie in Cfree this technique is
activated by trying to expand the random walk along this seg-
ment. To be specific, a set of fine grain equally spaced points
{s1 = xk, . . . , sP = s} lying on the aforementioned segment
is generated. The greedy strategy then sets xk+1 to the point
si such that si+1 /∈ Cfree and sj ∈ Cfree ∀ 1 ≤ j ≤ i
([13]).

When the algorithm terminates, i.e. when the last gener-
ated point is in Xgoal, or when the two chains can be con-
nected, the sequence of segments connecting xi with xi+1 (with
i = 0, 1, . . .) indeed builds up a path which solves the prob-
lem. However the quality of such path is usually poor, because
it includes a wide number of useless motions. Indeed the path
obtained resembles a Brownian motion. A postprocessing stage
is thus needed in order to smooth the generated trajectory. For
this reason we used a divide and conquer algorithm similar to
binary search (see algorithm 2, where the pushback operations
used therein append the given point to the end of the list). See
[15] for a similar approach. The smoothing procedure is repeat-

Algorithm 2 Solution Smoothing
1: SMOOTH(V, first, last, S)
2: INPUT: V vector of points to smooth
3: INPUT: first, last extremes of V to be optimized
4: INPUT/OUTPUT: S list with the smoothed sequence
5: if first = last then
6: S.pushback(V [first])
7: else if first = last− 1 then
8: S.pushback(V [first])
9: S.pushback(V [last])

10: else if the segment connecting V [first] and V [last] lies
entirely Cfree then

11: S.pushback(V [first])
12: S.pushback(V [last])
13: else
14: SMOOTH(V, first, (first + last)/2, S)
15: SMOOTH(V, (first + last)/2 + 1, last, S)

edly called until it is not able to further smooth the trajectory.
It is worth noting that due to the good performance of the algo-
rithm itself, the smoothing step turns out to be extremely fast
and few iterative steps are needed. This will be clearly illus-
trated in section IV.

III. THEORETICAL FOUNDATIONS

In this section we provide the formalism and the proofs about
the probabilistic convergence of the random walk algorithms
introduced in the former section. Demonstrations will be given
for what concerns the basic version, from which the conver-
gence of bidirectional and greedy search naturally follows. See
[16], [17] and [18] for similar proofs in the context of proba-
bilistic roadmaps. After introducing the terminology used, we
will define the stochastic process that will be called ARW. Then,
we will show that ARW allows to move between a certain kind

3

of adjacent sets with a probability greater than a constant de-
pendent only on the topology of the environment under consid-
eration. Next, it will be shown that a path which connects the
starting region with the goal region and that crosses a set more
than once can be turned into a path which crosses the same set
just once. These results will be then used to prove the prob-
abilistic convergence of the new randomized motion planning
algorithm.

Let Ω a probability space with ω ∈ Ω ([19, 20]). Let C
be [0, 1]n, whose generic element is denoted x and equipped
with the σ-algebra B(C) consisting of all the Borel sets in <n

(i.e. the open sets and their complements as well as the count-
ably infinite unions) contained in C. We will also denote with
µ(A) the Lebesgue measure of a generic set A in B(C). More-
over, we will denote Nx,Σ(y) the Gaussian probability density
as function of y, having mean x and covariance matrix Σ.

Definition 1: We define B+(C) as corresponding to the sets
in B(C) whose measure is strictly positive with respect to µ.
Hereby, we will denote with Cfree a fixed open set belonging
to B+(C).

Definition 2: We call {x1, x2} an admissible couple if tx1 +
(1− t)x2 ∈ Cfree for t ∈ [0, 1].
Let g : C × C → C such that:

 g(x1, x2) = x1 + x2 if {x1, x1 + x2} is an admissible
couple

g(x1, x2) = x1 otherwise

We define the discrete time stochastic process {Xk}k=0,1,2,...

on (Ω,Γ, η) and taking values on C, by the following recursive
formulas:

{
X0(ω) = xstart with xstart ∈ Cfree

Xk(ω) = g(Xk−1(ω), vk(ω)) for k=1,2,... (1)

where for every k the random vector vk(ω) is normal, zero-
mean with covariance matrix Σk(ω) (the dependence of a ran-
dom variable on ω will be hereby implicit). We call the stochas-
tic process in equation 1, Adaptive Random Walk (ARW).

Definition 3: We define the random vector Hk as corre-
sponding to {X0, X1, ..., Xk}.

Assumption 4: For every k, vk is independent from Hk−1

once Σk is known. Moreover, every entry of Σk is a ran-
dom variable which is measurable with respect to the σ-algebra
generated by Hk−1, i.e. there exists for every k a function
Lk : Ck → Rn×n such that Σk = Lk(Hk−1).

We call Lk the learning rule of the random walk at instant k.
Assumption 5: For every k, ε1In ≤ Σk ≤ ε2In where In is

the n × n identity matrix and ε1, ε2 are strictly positive num-
bers3.

Definition 6: Given Hk−1 and assigned x ∈ C and A ∈
B(C), we denote with P r

k,H(k−1)(x, A) the r-step transition
kernel of the chain, i.e. once known the history of the chain
until instant k, P r

k,H(k−1)(x, A) provides the probability that
ARW takes value in A at instant k + r.
We next define the concept of visibility set ([21]).

3Where A ≤ B means that B −A is positive semidefinite.

Definition 7: Assigned a set q belonging to B+(C) and con-
tained in Cfree, we denote with V (q) the maximal open set of
points x ∈ Cfree such that for every y belonging to q, {x, y} is
an admissible couple.

Lemma 8: Let q a set belonging to B+(C) and contained
in Cfree. Then, given an arbitrary D ∈ B+(C) contained in
V (q), there exists a strictly positive m such that for every x ∈
V (q), k and Hk−1:

P 2
k,Hk−1

(x, D) ≥ m

Proof: By definition of V (q), we have that for every x ∈ V (q),
k and Hk−1:

P 1
k,Hk−1

(x, q) ≥
∫

q

Nx,Σk+1(y)dy ≥ lµ(q) .= m1

where l is a real number which uniformly bounds from below
the function to be integrated on q (note that the existence of l
comes from Assumption 5). Moreover, we also have that for
every x ∈ q, k and Hk−1:

P 1
k,Hk−1

(x,D) ≥
∫

D

Nx,Σk+1(y)dy ≥ lµ(D) .= m2

Combining the two inequalities, we have that for every x ∈
V (q), k and Hk−1:

P 2
k,Hk−1

(x, D) ≥ m1m2

Remark 9: It is easy to note that when V (q) is convex, we
could replace P 2

k,Hk−1
(x,D) ≥ m with P 1

k,Hk−1
(x,D) ≥ m in

the statement of Lemma 8.
From this point on, if S is a subset of RN we indicate with S
the closure of the set.

Definition 10: Let T and U be subsets of Cfree. We say
that T and U are adjacent (and we write Adj(T,U)) when the
following holds:

T ∩ U ∩ Cfree 6= ∅
Lemma 11: Let Ai and Aj belong to B+(C) and to Cfree,

such that Adj(V (Ai), V (Aj)). Then, there exists a strictly pos-
itive m, such that for every x ∈ V (Ai), k and Hk−1:

P 3
k,Hk−1

(x, V (Aj)) ≥ m

Proof: Since Adj(V (Ai), V (Aj)), there exists a point

x0 ∈ V (Ai) ∩ V (Aj) ∩ Cfree

Then, since Cfree is open, there exists a ball Bε(x0) with ra-
dius ε and center x0 which is entirely in Cfree. We define the
set D1 = V (Ai)∩Bε(x0). Clearly, we have D1 ∈ B+(V (Ai)).
Then, by applying Lemma 8, there exists a strictly positive con-
stant m1 such that for every x ∈ V (Ai), k and Hk−1:

P 2
k,Hk−1

(x, D1) ≥ m1

Let D = V (Aj) ∩ Bε(x0). Again, by applying Lemma 8 and
by considering that Bε(x0) is convex, there exists a strictly pos-
itive constant m2, such that for every x ∈ D1, k and Hk−1:

4

P 1
k,Hk−1

(x,D) ≥ m2

Composing the two inequalities, we have that for every x ∈
V (Ai), k and Hk−1:

P 3
k,Hk−1

(x,D) ≥ m1m2

which completes the proof.
Definition 12: A triplet {Cfree, xstart, xgoal} is a solvable

instance of the motion planning problem if the set

S(Cfree, xstart, xgoal) = {f : [0, 1]→ Cfree

such that f(0) = xstart, f(1) = xgoal, f ∈ C0}

is not empty.
Definition 13: Let {Cfree, xstart, xgoal} a solv-

able instance of the motion planning problem, let
f ∈ S(Cfree, xstart, xgoal) and let A be a subset of
Cfree. We say that a solution f crosses A r times if the set

tfA = {t ∈ [0, 1] such that f(t) ∈ A }

is the union of r disjoint non empty intervals (either open,
closed or half open).

Lemma 14: Let {Cfree, xstart, xgoal} be a solvable instance
of the motion planning problem. Let us suppose that there ex-
ists a finite sequence A1, A2, ..., Ak, where every Ai belongs to
B+(C) and is contained in Cfree, such that

Cfree =
k⋃

i=1

V (Ai)

Then, there exists f ∈ S(Cfree, xstart, xgoal) that crosses at
most once V (Ai) for i = 1, 2, ..., k.

Proof: Let f∗ be a solution of the solvable instance
(Cfree, xstart, xgoal) that crosses two times V (Aj). Then,
since V (Aj) is open

tf
∗

V (Aj)
= {t ∈ [0, 1] | f∗(t) ∈ V (Aj)} = (a1, b1)∪(a2, b2).

Let p ∈ Aj . Starting from f∗ we define a new function f∗∗ as
follows

f∗∗(t) =

f∗(t) if t ≤ a1

f∗(a1) b2+a1−2t
b2−a1

+ 2p(t−a1
b2−a1

) if a1 < t < a1+b2
2

p 2b2−2t
b2−a1

+ f∗(b2)(2t−a1−b2
b2−a1

) if a1+b2
2 ≤ t < b2

f∗(t) if t ≥ b2

By the definition of V (Aj), it follows that also f∗∗ is a solu-
tion of the instance (Cfree, xstart, xgoal). It is then evident that
for each solution of (Cfree, xstart, xgoal), by repeatedly apply-
ing the former procedure it is possible to build a new function
which is also solution and indeed crosses at most once every set
in the sequence V (A1), . . . , V (Ak).

Theorem 15: Let Cfree be connected and such that there ex-
ists a finite sequence A1, A2, ..., Ak, where every Ai belongs to
B+(C), is contained in Cfree and

Cfree =
k⋃

i=1

V (Ai)

Then, for each xstart ∈ Cfree and Xgoal belonging to B+(C)
and to Cfree, the algorithm ARW started in xstart will reach
Xgoal with probability 1.

Proof: Without loss of generality we suppose that Xgoal

is entirely included in one of the sets of the sequence
V (A1), V (A2), ..., V (Ak) denoted V (Al). In the light of
Lemma 8 and 11, there exists a strictly positive m such that
for every V (Ai) and V (Ak) with Adj(V (Ai), V (Ak)) and for
every x ∈ V (Ai), k and Hk−1:

P 3
k,Hk−1

(x, V (Ak)) ≥ m

and for every x ∈ V (Al), k and Hk−1:

P 2
k,Hk−1

(x, Xgoal) ≥ m

This, in addition with Theorem 14, allows us to conclude that
there exists constants h and s, independent from x ∈ Cfree, k
and Hk−1 such that

h∑
r=1

P r
k,Hk−1

(x, Xgoal) ≥ s > 0

It follows that the probability that ARW has never entered the
set Xgoal after Zh steps is less or equal to (1 − s)Z . Clearly,
when Z diverges, this probability goes to zero.

It is easy to observe that the last formula is similar to
those found while analyzing the convergence of PRM or
RRT. We outline that when dealing with the bidirectional
search algorithm, as the two random walks are statistically
independent, formerly introduced convergence results still
hold. Moreover, for what concerns greedy search, all the
lower bound inequalities are still valid, and then again the
convergence holds.

Remark 16: One of the most studied aspects of stochastic
processes, in particular Markov chains, concerns their behavior
in the long term (see e.g. [22]). Investigations often concern the
existence of a limiting distribution together with the way the
process converges toward this distribution. To cite an impor-
tant example, Markov chains are currently used for evaluating
expectations of functions of interest under a target distribution
[23]. In this context one has to design the simulation so that it
can be guaranteed that asymptotically the state of the process
is exactly drawn from the desired distribution. Many of these
theoretical aspects related to the above defined ARW turns out
to be very complex to study. This is due to the fact that we al-
low the transition kernel to adapt whenever new features of the
configuration space are encountered during the run. As a conse-
quence, it appears very hard to establish e.g. if ARW possesses
a limiting distribution and which form it could have. In fact, the
adaptation occurs infinitely often and the stationary distribution
of the chain may be disturbed [24]. In the context of random-
ized motion planning, the interesting point is however that one

5

has only to design chains able to quickly visit all the free con-
figuration space, then proving their capability to reach the goal
set with probability one. This is exactly the purpose we have
obtained in this Section.

IV. SIMULATION DETAILS AND NUMERICAL RESULTS

The proposed algorithm with all its variants (greedy, non-
greedy, bidirectional) has been implemented and integrated into
the MSL software developed at the University of Illinois ([25]),
in order to compare it with different motion planning algo-
rithms over a set of standard problems. The MSL includes a
wide range of versions of RRT based motion planners as well
as the basic PRM motion planner. Problems included in the
MSL involve simple planar motion planning problems, as well
as complicated three dimensional environments with possible
multiple objects moving inside them (see figure 1 for an exam-
ple). The planar problems involve 3 degrees of freedom (x,y,
and the orientation), while objects in the three dimensional en-
vironments has 6 degrees of freedom (3 for the position, plus
the yaw, pitch and roll angles). MSL performs collision detec-
tion using the PQP library developed at the University of North
Carolina ([26]).

Fig. 1. One of the environments provided with the MSL software. The truck
has to be moved out of the cage.

The adaptive rule we have used is the following (see [27]). Let

xk =
1
H

k−1∑
i=k−H

xi (2)

be the average of the last H accepted samples. Given a square
p-dimensional matrix M let mij be its generic element in posi-
tion i, j. We define diag(M) as follows

diag(M) =

m11 0 · · · · · · 0
0 m22 0 · · · 0
... · · · · · · · · ·

...
0 · · · 0 mp−1,p−1 0
0 · · · · · · 0 mpp

 (3)

i.e. the matrix obtained from M by setting to 0 all the elements
outside the main diagonal. The update rule for Σk is then

Σk = max

(
diag

(
1
H

(
k−1∑

i=k−H

xix
T
i −HxkxT

k

))
,ΣMIN

)
(4)

where the function max returns a matrix whose generic element
is the greatest of the corresponding elements in the two argu-
ment matrices, and ΣMIN is a diagonal constant matrix with
strictly positive elements on the main diagonal. It then follows
that Σk is diagonal too. The square roots of diagonal values of
ΣMIN are set to one sixth of the difference between the max-
imal and minimal values which can be assumed by the corre-
sponding degree of freedom. Σ0 is initially set to ΣMIN . As
we are looking for local adaptivity, i.e. short term memory, and
for a fast update of the matrix Σk, history size is set to 10. We
also have a posteriori assessed that this specific choice does not
greatly influence the final results, for values of H , say less than
100. The computer used is a 2.0 Ghz Pentium IV with 512
Mbytes of RAM running Linux. All the subsequent numerical
results refer to the bidirectional greedy planner which turned
out to be the most efficient. Table I reports the data relative to
some the standard environments provided with the MSL. For
lack of space we can not give an in depth description of ev-
ery environment. We however use the same names given in the
MSL, so that the interested reader can refer to its documenta-
tion. Two aspects are evident. Firstly, the time spent by the
algorithm is linear in the size of the generated random walk
(compare columns T1 and N1). Secondly, even if the path pro-
duced by the random walk includes a great number of useless
motions, significant improvements can be gained with the very
fast post processing algorithm depicted in section II. Figure 2
illustrates an example of path smoothing. We then compare the

Fig. 2. The left figure illustrates a path generated using the random walk. The
right figure illustrates the same path after the smoothing.

random walk algorithm performance with that concerning the
basic PRM motion planner. For this aim, table II compares the
overall time spent by both algorithms to find the solution. We
choose to display the comparison for just the four car like en-
vironments where the performance of the two is comparable.
In more involved problems there are usually two or three or-
ders of magnitude of difference on the overall performance in
favor of ARW based planner. It has however to be reminded
that ARW is a single shot algorithm, while PRM is oriented to-
wards repeated queries over the same environment. Finally we
compare the performance of the random walk planner with the
RRTConCon algorithm provided in the MSL. RRTConCon is a
bidirectional single-shot greedy planner based on RRT ([13]).
Of course, comparing motion planning algorithms experimen-
tally using a restricted number of examples is hardly conclusive
in general. Moreover, both algorithms have been run without

6

Environment Number of points
in the random
walk

Time to gen-
erate the ran-
dom walk

Number of points
in the smoothed
path

Overall Plan-
ning Time

Number of
d.o.f.

Car 1 182 0.0229 10.03 0.0313 3
Car 2 907.93 0.2844 16.79 0.3497 3
Car 3 132.35 0.0372 8.9 0.0556 3
Car 4 105.7 0.0088 7.17 0.0114 3

Wrench 315.81 0.5500 23.5 1.4738 6
Cage 436.06 0.7588 14.03 1.2225 6
Truck 1731.73 7.8384 19.57 10.9321 6

Coffemug 226.78 0.3161 8.65 0.4537 6
3drigid 1 18.83 0.0532 6.22 0.1246 6
3drigid 2 8077.51 7.03 21.46 7.6171 6
3drigid 3 1657.05 1.7477 12.14 2.0408 6
Multi1 14.32 0.0181 6.43 0.057 18
Multi2 931.35 0.9464 17.6 1.3102 12
Multi3 341.2 0.5778 22.31 1.55 48
Multi6 10703.06 3.6282 69.87 4.3298 6

TABLE I
TIME SPENT IN THE VARIOUS STEPS OF THE ARW ALGORITHM. DATA ARE AVERAGED OVER 200 TRIALS AND TIME IS EXPRESSED IN SECONDS

Environment PRM ARW
Car 1 0.7447 0.0313
Car 2 1.3693 0.3497
Car 3 1.9961 0.0556
Car 4 0.3989 0.0114

TABLE II
COMPARISON BETWEEN PRM AND ARW PLANNERS. TIME IS EXPRESSED

IN SECONDS AND DATA ARE AVERAGED OVER 200 TRIALS

trying to find out the optimal values for the many parameters
involved and this could lead to different overall performance.
What emerges is however that the performance of ARW ap-
pears interesting when dealing with single-shot problems.

A. Importance of adaptivity: role of the history size

We previously anticipated that the performance of the algo-
rithm is not very sensitive to the history size. To prove this
claim, we have run the algorithm with different history sizes
and compared the results (see also [28]). We also run the algo-
rithm without adaptive components to verify the effectiveness
of the proposed technique. In particular, due to its probabilistic
nature, a maximum number of iterations is fixed. If the algo-
rithm does not find a solution within that limit, this is consid-
ered a failure. Table IV illustrates the success ratio, i.e. the
percentage of instances successfully solved within the given it-
erations bound. In all the cases the initial matrix Σ0 was the
same. Σ0 was fixed to be again a diagonal matrix whose ele-
ments were fixed to be the square of the the difference between
the maximal and minimal values which can be assumed by the
corresponding degree of freedom. These values are fixed at will
to be very large. It can be observed that without adaptivity the

Environment RRT ARW
Wrench 0.9824 1.4738

Cage 1.3908 1.2225
Truck 9.5486 10.9321

Coffemug 0.4825 0.4537
3drigid 1 0.0652 0.1246
3drigid 2 11.6726 7.6171
3drigid 3 14.0199 2.0408
Multi1 0.3842 0.057
Multi2 4.5345 1.3102
Multi3 84.2599 1.55
Multi6 6.3029 4.3298

TABLE III
COMPARISON BETWEEN RRTCONCON AND RANDOM WALKS

algorithm suffers from drawing samples from a bad distribu-
tion. Instead, when adaptivity is included, the covariance ma-
trix is updated and driven to more favorable values. This is
indeed a big advantage, as it this then not necessary to invest
a lot of time to tune the algorithm’s parameters since a rough
initial choice can also be used. Table V instead compares the
average time spent for different values of the history size. It can
be observed that no significant variations emerge. The second
important observation can be drawn from the execution times.
We should remind that H = k means that the last k accepted
samples are used in order to compute their variance. This means
that at every iteration it is necessary to process a k×n data ma-
trix. In spite of the increased size of such matrix we can observe
that the time spent is more or less constant and sometimes even
decreases. Interestingly, this clearly indicates that the informa-
tion acquired from the last k accepted samples is successfully
used to quickly improve the sampling parameters. To make an

7

Environment No Adaptivity H=5 H=10 H=20 H=30 H=40 H=50 H=100
Coffeemug 32 100 100 100 100 100 100 100
Cage 20 100 100 99 100 100 99 99
Wrench 10 61 61 70 59 60 65 68
Truck 0 91 88 88 89 94 90 89
3drigid1 100 100 100 100 100 100 100 100
3drigid2 0 95 83 80 90 86 88 80
3drigid3 28 100 100 100 100 99 100 100

TABLE IV
SUCCESS RATIO FOR DIFFERENT VALUES OF H AND FOR THE ALGORITHM RUN WITHOUT ADAPTIVITY. PERCENTAGES ARE COMPUTED OVER 200

TRIALS FOR EACH BENCHMARK.

Environment H=5 H=10 H=20 H=30 H=40 H=50 H=100
Coffeemug 2.089 2.118 2.208 1.988 2.169 2.231 1.978
Cage 3.463 3.219 3.690 4.128 3.476 4.085 3.935
Wrench 8.816 7.954 8.809 7.603 7.857 8.243 8.063
Truck 38.277 35.605 30.095 38.317 36.251 34.542 31.422
3drigid1 0.355 0.400 0.389 0.369 0.392 0.400 0.388
3drigid2 14.908 14.660 14.484 14.287 14.893 14.901 13.515
3drigid3 3.564 3.413 3.065 3.035 3.173 2.946 3.106

TABLE V
TIME PERFORMANCE OF THE ARW ALGORITHM FOR DIFFERENT VALUES OF THE HISTORY SIZE H . TIME IS MEASURED IN SECONDS. AVERAGE IS

COMPUTED OVER 200 TRIALS FOR EACH BENCHMARK.

example, when the variance of the increments throw which the
robot is currently moving is too large, so as to make many of the
proposed movements fall outside the free configuration space,
the algorithm is able to automatically reduce the variance of
its steps, thus augmenting the probability to explore a narrow
space, e.g. a corridor, in a more effective and rapid way (see
figure 3. An important point which will deserve more attention

Fig. 3. When the robot moves in wide spaces (left) then a big covariance allows
to try big steps. When it moves into the horizontal corridor, the covariance
matrix indicates that big steps along the x axis are still possible, but not along
the y direction. This because proposed samples with big displacements along
the y directions are refused, and then the corresponding matrix entry reduced.
In the diagonal corridor small steps in both directions will be taken, as samples
with big steps in both directions will be rejected. On the other hand, if one
allows for off-diagonal covariance matrix, then the covariance ellipsoid could
align with the passage.

in the future is an accurate investigation in order to get clearer
indications about the equilibrium point, i.e. to have indications
about a range of values for H giving a minimum in the search
times. This point is clearly non trivial since the expected time
for finding the solution is of course a complex function of H

which depends on the unknown environment where the robot
moves. We also mention that we have repeated the simulations
by computing the correlation between the last accepted samples
but it turned out that no significant speed up can be observed by
using non diagonal matrices. Of course, the design of more re-
fined adaptivity rules could be important to further improve the
performance of the proposed algorithm. For example, if knowl-
edge about the C-space was available, it could be used in the
choice of an adaptation rule for a more efficient path-finding.

V. CONCLUSIONS AND FUTURE WORK

We introduced the first random walk based adaptive motion
planner. The algorithm builds a random walk with Gaussian
increments over the configuration space. As the produced path
can be very uneven, an efficient post processing step is used,
yielding a fast smoothing of the produced path. A simple but
effective technique for letting the algorithm adapt the random
distribution parameters, in order to speed up the exploration
process, has been devised. Thanks to this feature it is possible
to get a variable sampling resolution, which is indeed believed
to be one of the most promising research directions. Rigorous
proofs of the theoretical soundness of the algorithm have been
provided under mild assumptions on the environment to explore
and on the learning rule which makes the algorithm adaptive.
Numerical results clearly illustrate that for most of the inves-
tigated problems the adaptive random walk planner appears to
be competitive. A direction for further developments is the in-
troduction of a bias to let the samples be generated not only

8

according to the covariance matrix, but also taking into consid-
eration unexplored regions. We are at the moment working on
this extension. In the near future we also plan to investigate the
use of more refined adaptive techniques which could be useful
while applying the algorithm in domains different from robot
motion planning. For example it appears particularly interest-
ing to apply the algorithm to bioinformatics problems like pro-
tein folding and ligand docking. In this context, we expect the
adaptivity to be even more important, thanks to the continuous
nature of the energetic levels concerning proteins instead of the
boolean nature of the configuration space characterizing robot
motion planning. This will likely call for the study of more
refined online learning techniques than those presented herein.

ACKNOWLEDGMENTS

We thank professor Steve LaValle for making freely available
the MSL software. We also acknowledge the referees for con-
structive criticism.

REFERENCES
[1] L.E. Kavraki, P. Švestka, J.C. Latombe, and M.H. Overmars, “Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[2] R. Bohlin and L.E. Kavraki, “Path planning using lazy prm,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation,
Seoul, May 2000, pp. 1469–1474.

[3] L.K. Dale and N.M. Amato, “Probabilistic roadmaps - putting it all to-
gether,” in Proceedings of the IEEE International Conference on Robotics
and Automation, Seoul, May 2001, pp. 1940–1947.

[4] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin,
“On finding narrow passages with probabilistic roadmap planners,” in
Robotics : The Algorithmic Perspective.The Third Workshop on the Algo-
rithmic Foundations of Robotics, P.K. Agarwal, L.E. Kavraki, and M.T.
Mason, Eds., pp. 142–153. A.K. Peters, 1998.

[5] P. Leven and S. Hutchinson, “Towards real-time path planning in chang-
ing environments,” in Algorithmic and Computational Robotics: New
Directions, D. Rus B. Donald, K. Lynch, Ed., pp. 363–376. A.K. Peters,
2001.

[6] J.C. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” The International Journal of Robotics Re-
search - Special Issue on Robotics at the Millennium, vol. 18, no. 11, pp.
1119–1128, 1999.

[7] P. Cheng and S.M. LaValle, “Deterministic resolution complete rapidly-
exploring random tree,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, Washington, May 2002.

[8] S. M. LaValle and M. S. Branicky, “On the relationship between classical
grid search and probabilistic roadmap,” in Workshop on the Algorithmic
Foundations of Robotics, 2002.

[9] J. Barraquand and J.C. Latombe, “Robot motion planning: A distributed
representation approach,” The International Journal of Robotics Re-
search, vol. 10, no. 6, pp. 628–649, 1991.

[10] T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Transactions on Computers, vol. C-32, no. 2, pp. 108–120, 1983.

[11] J.C. Latombe, Robot Motion Planning, Kluver Academic Publishers,
1990.

[12] J.H. Reif, “Complexity of the mover’s problem and generalization,” in
Proceedings of the 20th IEEE Symposium on Foundations of Computer
Science, 1979, pp. 421–427.

[13] J.J. Kufner and S.M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings of the IEEE Conference on
Robotics and Automation, San Francisco, April 2001, pp. 995–1001.

[14] A. Atramentov and S.M. LaValle, “Efficient nearest neighbor searching
for motion planning,” in Proceedings of the IEEE Conference on Robotics
and Automation, Washington, May 2002, pp. 632–637.

[15] G. Sánchez and J.C. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” International Journal of
Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.

[16] L.E. Kavraki, M.N. Kolountzakis, and J.C. Latombe, “Analysis of proba-
bilistic roadmaps for path planning,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 1, pp. 166–171, 1998.

[17] D. Hsu, J-C. Latombe, and R. Motwani, “Path planning and expansive
configuration spaces,” International Journal of Computational Geometry
and Applications, vol. 9, pp. 495–512, 1999.

[18] A. Ladd and L. Kavraki, “Generalizing the analysis of prm,” in Proceed-
ings of the IEEE international conference on robotics and automation,
2002, pp. 2120–2125.

[19] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, 1991.

[20] B. Øksendal, Stochastic Differential Equations, Springer, 1998.
[21] M. de Berg, M. van Kreveld, M.Overmars, and O. Schwarzkopf, Compu-

tational Geometry, Springer, 2000.
[22] S.P. Meyen and R.L. Tweedie, Markov Chains and Stochastic Stability,

Springer-Verlag, 1993.
[23] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, Eds., Markov Chain

Monte Carlo in Practice, Chapman & Hall, 1996.
[24] W.R. Gilks, G.O. Roberts, and S.K. Sahu, “Adaptive markov chain monte

carlo through regeneration,” Journal of the American Statistical Associa-
tion, vol. 93, pp. 1045–1054, 1998.

[25] S.M. LaValle, “Msl - the motion strategy library software,”
http://msl.cs.uiuc.edu.

[26] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Tech. Rep. TR99-018, Department
of Computer Science, University of N. Carolina, Chapel Hill, 1999.

[27] H. Haario, E. Saksman, and J. Tamminen, “Adaptive proposal distribution
for random walk metropolis algorithms,” Computational Statistics, vol.
14, 1998.

[28] S. Carpin and G. Pillonetto, “Learning sample distribution for random-
ized robot motion planning: role of history size,” in Proceedings of the In-
ternational Conference on Artificial Intelligence and Applications, 2003,
pp. 58–63.

