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Pursuit-Evasion on Trees by Robot Teams
Andreas Kolling and Stefano Carpin

Abstract—We present Graph-Clear, a novel pursuit-evasion
problem on graphs which models the detection of intruders in
complex indoor environments by robot teams. The environment
is represented by a graph, and a robot team can execute sweep
and block actions on vertices and edges respectively. A sweep
action detects intruders in a vertex and represents the capability
of the robot team to detect intruders in the region associated
to the vertex. Similarly, a block action prevents intruders from
crossing an edge and represents the capability to detect intruders
as they move between regions. Both actions may require multiple
robots to be executed. A strategy is a sequence of block and
sweep actions detecting all intruders. When solving instances
of Graph-Clear the goal is to determine optimal strategies, i.e.
strategies using the least number of robots. We prove that for
the general case of graphs the problem of computing optimal
strategies is NP-hard. Next, for the special case of trees we
provide a polynomial time algorithm. The algorithm ensures that
throughout the execution of the strategy all cleared vertices form
a connected subtree, and we show it produces optimal strategies.

I. INTRODUCTION

This paper presents Graph-Clear, a pursuit-evasion problem
on graphs suitable to model the detection of intruders in an
environment by robot teams with limited sensing capabilities.
In Graph-Clear an environment is represented by a weighted
graph on which one can execute sweep actions on vertices and
block actions on edges. A sweep action detects all intruders
in a vertex, while a block action detects intruders that attempt
to cross an edge. In Graph-Clear it is assumed that all edges
incident to a vertex are blocked while the sweep operation is
executed. These actions represent routines that the robot team
can execute in the actual environment. Because of the limited
sensing hypothesis, more than a single robot is in general
necessary to successfully perform these intruder detection
operations. Weights on vertices and edges therefore associate
a cost to each action denoting the number of robots needed to
execute it. The goal of Graph-Clear is to find a sequence of
these actions, a so-called strategy, that detects all intruders in
the environment using the least number of robots. Intruders are
assumed to be omniscient and capable of moving at unbounded
speed. In particular, they are assumed to have full knowledge
of the environment, of the pursuers positions, and even of
their strategy. We represent the possibility of an intruder being
located somewhere with the concept of contamination. Initially
the entire graph is contaminated and each sweep and block
clears contamination from vertices and edges. The task of
finding any intruder is equivalent to removing all contamina-
tion. Since intruders have full knowledge, recontamination of
previously clear vertices or edges occurs whenever an intruder
has a path to that vertex or edge on which it cannot be detected.
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To apply Graph-Clear and use strategies for the coordination
of a real robot team one needs to solve two subproblems.
First, one has to provide implementations of sweep and block
actions. These can differ widely and depend on the type of
environment, robot platform, and sensors. Hence, they often
require committing to a particular sensing model or hardware.
For a vertex, the corresponding implementation for the sweep
action has to guarantee the detection of any intruder inside the
region that the vertex is associated to, given that no intruder
can enter or leave the region while sweeping takes place.
Similarly, an implementation of a block action on an edge
has to guarantee that no intruder can cross it undetected.
The second subproblem is the automatic extraction of graphs
from a given environment. This is not strictly necessary since
graphs can be generated manually, but it is highly desirable
for most applications and it opens further interesting research
questions. Our former results on extracting graphs and weights
from occupancy grid maps and implementations for sweep and
blocking routines have been presented elsewhere [1] and are
briefly discussed in Section III-A.

There is a rich literature concerning a variety of pursuit-
evasion problems on graphs, often referred to as graph-
searching. Graph-searching and its variations also require
solutions to the above subproblems if one aims to utilize them
to coordinate robot teams. The edge-searching problem [2]
is perhaps the most prominent and oldest of these problems,
and it is the most closely related to the model we present in
this paper. To motivate the introduction of Graph-Clear, we
therefore briefly describe its differences from edge-searching
and its weighted variant. The edge-searching problem asks to
determine a sequence of moves detecting all intruders in a
graph using the least number of robots. A move consists of
either placing or removing a robot on a vertex, or sliding it
along an edge. A vertex is considered guarded as long as it
has at least one robot on it, and any intruder located therein
or attempting to pass through will be detected. A sliding
move detects any intruder on an edge. In the weighted variant
weights on vertices denote the number of robots needed for
each vertex to be considered guarded, while weights on edges
denote the number of robots needed for a slide move to detect
all targets [3]. Consequently, for each move in a sequence one
needs to additionally specify how many robots are used for it.

The key differences between weighted edge-searching and
Graph-Clear are in the requirements imposed for the imple-
mentation of basic operations. To apply edge-searching one
needs to provide implementations for guarding and sliding,
while in Graph-Clear one needs to implement sweeping and
blocking. An implementation of guarding has to guarantee
that all intruders in the associated region for the vertex are
detected and furthermore that no intruder can enter or exit
the region undetected. Sweeping does not require the latter.
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Instead, in Graph-Clear while sweeping a vertex we require a
block on each edge to prevent targets from entering or exiting.
The consequence is that some robot algorithms cannot be
used for guarding operations. The example in Fig. 1 uses an
algorithm for detecting targets inside the region of a vertex that
does not satisfy the guarding requirements and is hence not
directly suitable for edge-searching. To satisfy the guarding
requirements one would have to augment the algorithm by
additionally positioning robots at the entrances. Then the cost
of this combined routine becomes a weight in weighted edge-
searching which represents the number of the robots needed
to search the region and to keep entrances covered. But, once
the robots searched the region and hence cleared the vertex
we still have to guard the vertex to prevent recontamination
of its neighbors. In practice this continued guarding after the
actual search does not need to involve any of the robots that
performed the search, but only those covering the entrances.
But in weighted-edge searching we still pay the full cost
for the guarding operation. This is because in edge-searching
guarding of a vertex performs two basic functions, namely
the prevention of spreading of contamination from and to
its neighbors, and additionally the detection of all intruders
in the vertex. One could try to overcome this problem by
having weights on edges represent the cost of entering a vertex,
searching and covering the entrances while the weight on
the vertex only represents the cost of covering the entrances.
But then sliding along an edge costs more than guarding the
vertex. Not only is this unintuitive, but the formulation of
weighted edge-searching from [3] does not allow edge weights
larger than the weight of the adjacent vertex. Even if this
was remedied there is yet another problem. Suppose we clear
the center vertex and then one of its neighbors. At this point
the entrance to the neighboring vertex does not need to be
blocked any further and the weight for guarding the center
vertex should change to reflect this. Since weights are fixed
this cannot be captured. There is no immediate remedy for
this since in edge-searching the spreading of contamination is
avoided only by actions on vertices and never on edges. In
Graph-Clear, on the other hand, the search of a region and
the prevention of recontamination from neighboring regions
are separated and the latter occurs on edges. In colloquial
terms, in edge-searching the intruder movement is restricted
by robots in vertices while in Graph-Clear we move this
capability to the edges, effectively disentangling detection in
a vertex from the prevention of recontamination. Evidently,
this is useful for vertices that represent complex regions and
edges that are simple connections between these regions. On
the other hand, edge-searching is useful for simple vertices and
complex connections between these, such as the network of
tunnels example often mentioned as a motivation for edge-
searching. Another important distinction between weighted
edge-searching and Graph-Clear is discussed in detail after
the definitions for Graph-Clear in Section III-A. It relates to
a counterintuitive consequence of the addition of weights to
the traditional edge-searching problem. Allowing simultaneous
moves can improve solutions to the weighted edge-searching
problem.

The main motivation for Graph-Clear is the design of robot

Fig. 1. An example that illustrates how a graph for Graph-Clear can relate
to an actual environment. The environment is shown in grey with its graph
embedded. All weights in this example are equal to one. Connections between
regions that are connected by edges are shown in black. The center region is
the ”eagle” example redrawn from [4]. It can be cleared using the algorithm
from [4] with only one robot and a simple gap sensor with sufficiently large
range. During its execution it recontaminates the top part of the region and
hence cannot guarantee that no target enters the vertex undetected. We hence
need blocks on the edges, i.e. to position sensors on the black regions. Note
that the entire environment can be very large so that the sensor only satisfies
the large range assumption within a vertex.

algorithms that will ultimately run on large robot teams.
Yet, this paper is primarily devoted to the formalization and
analysis of Graph-Clear as a formal pursuit-evasion problem
on a graph. This formalization allows us to address the main
computational challenges resulting from the consideration of
large environments and large robot teams in a formal and
deterministic setting. Other challenges, such as probabilistic
scenarios with faulty sensors and imprecise actuators, im-
plementations of sweep and block actions on real robots
and algorithmic extraction of graphs from robot maps are
addressed in separate papers [1], [5] and the subject of further
work. More precisely, this paper presents the following four
original contributions:

1) Graph-Clear is rigorously formalized. This formalization
allows us to exploit a number of formerly developed
literature results in related areas (Section III).

2) We prove that the decision version associated with the
Graph-Clear problem is NP-hard. This result was an-
nounced in one of our former papers, but the proof has
never been published (Section IV).

3) For the special case of contiguous strategies which ensure
that all intruder-free vertices are always connected, we
prove that recontamination does not help (Section VI).

4) Given that for the general case of graphs the problem is
NP-hard, we focus our attention on trees. In Section V
we start presenting some terminology useful for clearing
trees, and then in Section VII we present an algorithm
to produce contiguous strategies for trees. The algorithm
is shown to use the least number of robots, and has time
complexity quadratic in the number of vertices.

To ease reading, all proofs are given in an appendix, with
the exception of the proof of NP-hardness.

II. RELATED WORK

Surveillance tasks with robots have been investigated in
manifold variations. They differ with respect to the considered
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environments, communication and mobility constraints, sensor
models, and the number of robots used. Our review focuses
on selected publications from visibility-based pursuit-evasion,
graph-searching, and cooperative surveillance.

Visibility-based pursuit-evasion is one of the more promi-
nent research areas with sound theoretical results. The field
was pioneered by Suzuki and Yamashita [6] with the in-
troduction of the k-searcher which emits k beams to detect
intruders, and the ∞-searcher which is a point source for
such beams. Sufficient and necessary conditions for existence
of a search schedule with a k-searcher in simple polygons
were presented as well. Yamashita et al. [7] introduced tight
upper and lower bounds on the so called search number of a
polygon. Some of the upper bounds were derived from graph-
searching, discussed later in this section. A first complete
algorithm to solve the visibility-based pursuit-evasion problem
was given by LaValle et al. [8] for the ∞-searcher. The
approach is motivated by information states that change when
critical boundaries are crossed by a searcher. The information
states are associated to gap-edges of the sensors, i.e. all edges
of the polygon covered with the sensor that are adjacent to
free space. These critical boundaries partition the polygon into
cells. Combining this decomposition of the polygon in graph
form with the information state produces a new exponential
size graph in which a solution is computed. Guibas et al. [9]
established NP-hardness for finding the minimal number of
∞-searchers needed for any polygon through a reduction of
some instances of visibility-based pursuit-evasion to instances
of graph-searching. Furthermore, they showed that there exist
polygonal environments which a single pursuer can clear, but
only if allowing Ω(n) recontaminations where n is the number
of edges of the polygon. This result applies to unlimited range
sensors. In Graph-Clear we will show that recontamination
does not help to improve clearing strategies. It is currently
unclear whether recontamination helps in all robotic scenarios,
in particular with very limited sensing when the sensing
range is smaller than the smallest distance between any two
distinct obstacles. Finally, in [10] Park et al. presented a
quadratic algorithm for solving the visibility-based pursuit-
evasion problem for one pursuer. Necessary and sufficient
conditions for searchability are given, as well as a proof
of the conjecture by Suzuki and Yamashita stating that a
polygon searchable by an ∞-searcher is also searchable by a
2-searcher. Curved environments were first considered in [11].
The approach therein extends the critical boundaries from [8]
to smooth boundaries of the environment based on inflections
and bitangents. The environment is simply-connected and the
pursuer has omni-directional vision. For polygonal environ-
ments LaValle et al. [12] presented an algorithm for a pursuer
with only a flashlight, i.e. a 1-searcher. The algorithm solves
the problem by Suzuki and Yamashita for 1-searchability and
produces a search strategy if one exists. Simple polygons with
n edges and m concave regions are considered which leads
to an algorithm with complexity O(m2 + m log n + n). The
basis of the algorithm is a so called visibility obstruction
diagram which is a 3-partition of the configuration space. In
this diagram certain paths, called winning paths, lead to a
strategy of the pursuer in the polygon. The search space of

the diagram is reduced to a skeleton by considering critical
points on the boundary of the polygon. In this structure a
path can be found efficiently. Another variant using sentries
(immobile sensing devices that can be placed by a robot) is
investigated by Guilamo et al. in [13]. The authors develop an
online algorithm for unknown simply connected environments
for simple gap sensors. The motion strategy is based on
critical events regarding the gaps detected by the sensor, i.e.
appearances, disappearances, splits and merges of gaps. The
approach uses sentries that the pursuer can place and recollect.
The number of dropped sentries is bounded by O(logm)
where m is the number of bitangents related to critical events.
One main result is that if one robot can clear the environment,
then so can the robot using a gap-navigation-tree with at
most two sentries. Numerous methods presented therein make
use of results on gap-navigation from [14] and [15]. In [4]
Sachs et al. presented an on-line algorithm for a point pursuer
moving in an unknown, simply-connected, piecewise-smooth
planar environment. The pursuer is only equipped with a
sensor that measures depth-discontinuities. Also the controls
are minimalist, as only wall-following or a movement along
the measured depth-discontinuities is allowed. Furthermore,
imperfect control is assumed. The approach incrementally
builds a navigation graph-based on the motion primitives. The
information state, i.e. possible locations for the intruder, is
superimposed on this graph forming the so called information
graph. An online version is obtained by computing preliminary
solutions in the information graph. The algorithm is complete
and enables the limited pursuer to clear the same environments
that a pursuer with a map, perfect localization, and perfect
control can clear. Results with multiple robots, i.e. two 1-
searchers, are due to Simov et al. in [16]. The environment is
therein restricted to a simple polygon. The authors presented
an O(n2 + nm2 + m4) complete algorithm to compute a
search strategy in a polygon with n edges and m concave
regions. It is also based on an information state graph using
an elaborate geometrical characterization of the polygon. Yet
another visibility-based variant considering bounded speed is
investigated in [17]. The environment is a simply-connected
polygon and the algorithm incorporates the notion of time
by considering reachability sets, i.e. contaminated areas grow
with time and form these sets instead of filling the accessible
space instantaneously. Recently, Yu and LaValle [18] presented
a method that infers possible target locations from combina-
torial sensor data from multiple robots. Space is separated
into visible and multiple connected shadow regions and target
location is inferred as shadow regions merge and split. Robot
movement, however, is not controlled by the algorithm.

Another closely related area of research is known as graph-
searching. In the following we can present only a small
selection of the vast literature. A recent survey is available
in [19]. The origins of graph-searching relate back to [2] in
which Parson et al. proposed the first pursuit-evasion problem
on graphs now known as edge-search. The problem consists of
an initially contaminated graph G in which searchers traverse
edges to capture an arbitrarily fast intruder. Contamination is
used to represent the possibility of the intruder occupying an
edge. Intruders can move across all vertices which are not
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guarded by searchers. The problem is to find the smallest
number of searchers, known as the search number s(G),
with which one can guarantee to capture the intruder. In [20]
Megiddo et al. showed that the decision variant of finding s(G)
is NP-complete. The proof is a reduction to the well-known
min-cut into equal sized subsets problem [21]. The authors
also presented a linear time algorithm for finding the search
number in trees and an O(n log n) algorithm to compute a
corresponding strategy. The proof relies on an early manuscript
from 1982, later published as [22], in which LaPaugh showed
that for a pebbling version of edge-search recontamination
is not necessary for optimal strategies. Another proof that
recontamination is not necessary in edge-searching is given
by Bienstock and Seymour in [23]. The original edge-search
problem has been explored in many other variants such as
node-search [24], mixed-search, inert search and domination
search [25]. Many of these variants have been connected to
graph layout problems. The search number is shown to be
the cut-width of G if the maximum degree of any vertex
is 3 [26]. In [27] relations between the search number and
vertex separation are established and methods to compute the
vertex separation layout problem were shown to be applica-
ble to compute strategies in O(n log n) and determine the
search number in O(n) for certain instances of the problem.
Improved vertex separation layout methods from [28] can
find strategies in O(n). In [24] the node-search number was
shown to be equal to the vertex separation plus one. Most
relevant for our purposes is a graph-searching variant from
[3] in which Barriere et al. considered weighted graphs and
introduced the concept of contiguous strategies which require
that all cleared vertices form a connected subgraph. They
presented an algorithm that computes contiguous strategies in
linear time on trees which is based on computing labels on
edges. It is important to note that edge-searching and Graph-
Clear differ significantly, i.e. in edge-searching searchers move
across edges, thereby clearing them, and guard vertices which
restricts the intruder movement. In Graph-Clear edges are
blocked (the equivalent of guarding) and vertices are cleared.

In cooperative multi-robot research there is a third strain
of investigation concerned with cooperative surveillance of
moving targets with large robot teams. Most of this research
focuses on heuristics and often simplifies the environment
significantly. Theoretical results are rarer in this area, but the
methods cope with inferior sensing capabilities and larger
team sizes. A popular problem is the Cooperative Multi-
Robot Observations of Multiple Moving Targets (CMOMMT)
defined by Parker [29]. Solutions to CMOMMT include those
given in [29] and [30], the later including proven bounds for
performance. In [31] more complicated environments are con-
sidered and heuristics for distributing the robots across parts of
the environments are developed. For the probabilistic detection
of intruders there are heuristics developed by Moors et al. in
[32]. The authors create a graph by randomly placing vertices
in the environment until all parts are covered, assuming that
a vertex covers the area a sensor covers at the same location.
Edges connect all vertices with overlapping coverage and an
A* search computes the plan for robots on this graph.

III. PROBLEM FORMULATION

A formal definition of Graph-Clear is presented in this
section. It is assumed that the reader is familiar with graphs
and trees, and is referred to [33] for the basic notation and
terminology we use. The first part presents a formulation in
terms of graph theory concepts, and the language is chosen
accordingly. The connection between Graph-Clear and real
world problems is presented in subsection III-A.

Definition 1 (Surveillance graph): A surveillance graph is
a triple G = (V,E,w), where (V,E) is an undirected graph
with vertex set V , edge set E, and w : V ∪ E → N+

as a weight function1. Vertices and edges in a surveillance
graph have a state. The state of a vertex can be clear,
or contaminated, while the state of an edge can be clear,
contaminated or blocked. If x is a vertex or an edge, its state
is indicated as ν(x).

Notation: Depending on the context, edges will be indicated
either as e or as (vi, vj), with vi, vj ∈ V . Throughout the
paper the notation (u,w) indicates an undirected edge between
vertices u and w. If v is a vertex, edges(v) is the set of all
edges having v as end point. The degree of a vertex v is the
number of edges having v as end point, i.e. degree(v) =
|edges(v)|. If G is a graph, V (G) is its set of vertices and
E(G) the set of edges. Also, possible state values will be
abbreviated using the letters R for clear, C for contaminated,
and B for blocked.

Assumption: from here onwards unless otherwise stated we
shall assume that |V | = n and |E| = m.

Definition 2 (State space and state of a surveillance graph):
The state space of a surveillance graph G is the set

V(G) = {R, C}n × {R, C,B}m.

The state of the surveillance graph G is an element ν =
{ν1, . . . νn+m} ∈ V(G) such that νi = ν(vi) for i = 1 . . . n,
and νn+j = ν(ej) for j = 1 . . .m.

The state of a graph is a string of symbols from the alphabet
{R, C,B} indicating the state of every vertex and edge. The
first n symbols indicate the state of vertices, and the last m
the state of edges.

Definition 3 (Recontamination Path): Let G be surveil-
lance graph with state ν, and let x, y ∈ V ∪ E. A recontam-
ination path between x and y is a path of edges and vertices
on which no edge is blocked, i.e. for all edges ei of the path
we have ν(ei) 6= B.

The reader should note that while defining the concept of
recontamination path we generalize the usual definition of path
in a graph. Rather than defining paths only between a couple of
vertices we also consider paths between edges, and between a
vertex or an edge, or vice versa. In every situation we impose
that the edges along the path should not be blocked. Two
types of actions can be applied to a surveillance graph, namely
blocking on edges and sweeping on vertices. The goal of these
actions is to change the state of vertices and edges so that no
contaminated edges or vertices remain. While blocking can be

1In this paper N+ indicates the set of positive natural numbers, while N
indicates the set of natural numbers (i.e. including 0).
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applied to any edge, sweeping can be applied to a vertex v
only if all edges originating from v are blocked.

Definition 4 (Action set and actions): The action set of a
surveillance graph G is the subset of {0, 1}n+m where each
element a = {a1, . . . , an+m} (called action) satisfies the
following constraint:
• if ai = 1 with 1 ≤ i ≤ n, then an+j = 1 for each edge
ej ∈ edges(vi)

If ai = 1 with 1 ≤ i ≤ n, we say that the action a sweeps
vertex vi, and if an+j = 1 with 1 ≤ j ≤ m we say that action
a blocks edge ej . The action set of G is indicated as A(G).

Definition 5 (Sweeping and blocking cost): Let G be a
surveillance graph. The sweeping cost of a vertex v ∈ V is
w(v), while the blocking cost of an edge e ∈ E is w(e).

Definition 6 (Cost of an action): Let G be a surveillance
graph and let a ∈ A(G) be an action. The cost of action
a is:

c(a) =
n∑
i=1

aiw(vi) +
m∑
j=1

an+jw(ej)

The former definition states that the cost of a is the sum
of the blocking and sweeping costs for the edges blocked and
vertices swept by a. It follows that the cost of sweeping a
single vertex v is the following

s(v) = w(v) +
∑

ej∈edges(v)
w(ej) (1)

because in order to sweep a vertex it is necessary to block all
its edges.

Definition 7 (Transition function): Let G, V(G) and A(G)
be defined as above. The transition function ζ maps a state
and an action into a new state:

ζ : V(G)×A(G)→ V(G).

Given a ∈ A(G) and ν ∈ V(G), the new state ν′ is defined
as follows:

1) if an+j = 1, 1 ≤ j ≤ m, then ν′(ej) = B
2) if ai = 1, 1 ≤ i ≤ n, then ν′(vi) = R
3) if νn+j = B, an+j = 0, 1 ≤ j ≤ m, and no

recontamination path between ej and x ∈ V ∪ E with
ν(x) = C exists, then ν′n+j = R

4) if there exists a recontamination path between x ∈ V ∪E
and y ∈ V ∪ E with ν(y) = C, then ν′(x) = C

5) ν′i = νi otherwise.
The transition function establishes how the state of G

changes when an action is applied. The five cases can be
described in words as follows:

1) edges where a block action is applied become blocked;
2) vertices where a sweep action is applied become clear;
3) blocked edges where a block action is not applied any-

more become clear if there is no recontamination path
involving them;

4) vertices or edges for which a recontamination path to-
wards a contaminated vertex or edge exists become
contaminated;

5) vertices or edges maintain their previous state if none of
the former cases apply.

Definition 8 (Strategy): Given a graph state ν ∈ V(G), a
strategy S for ν is a sequence of actions a1, a2, . . . , ak that
when applied in sequence clears all elements in G, i.e.:

ζ . . . ζ(ζ︸ ︷︷ ︸
k times

(ν, a1), a2) . . . , ak) = {R,R, . . . ,R}︸ ︷︷ ︸
m+n times

Definition 9 (Cost of a strategy): Let S = {a1, . . . , ak} be
a strategy. The cost of strategy S is

ag(S) = max
i=1...k

c(ai) (2)

We now can formally define the Graph-Clear problem.
Definition 10 (Graph-Clear problem): Let G be a surveil-

lance graph whose state is ν = {C, C, . . . , C}. Determine a
strategy S for ν of minimal cost.

From now onwards, before a strategy is applied to a
surveillance graph we assume that the state of all its elements
is C, unless stated otherwise. We distinguish between two types
of strategies using the concept of contiguity adapted from [3].

Definition 11 (Contiguous and non-contiguous strategies):
Let G be a surveillance graph in state ν = {C, C, . . . , C}.
A strategy S for G is contiguous if the subset of cleared
vertices and cleared or blocked edges always forms a
connected subgraph of G. Otherwise, a strategy is said to be
non-contiguous.

This distinction is useful, since contiguous strategies on
trees turn out to be easier to compute, as presented in Section
VII. Another type of strategy is the following.

Definition 12 (Progressive strategy): A progressive strat-
egy is a strategy for a surveillance graph G in state ν =
{C, C, . . . , C} preventing recontamination.

In particular, we will later on concentrate our study on
progressive contiguous strategies.

Definition 13 (Cost of a graph): Let G be a surveillance
graph and let S be a strategy of minimal cost for G. We
define the cost of graph G as ag(G) = ag(S).
Similarly for a graph G in any state ν we write ag(G, ν) =
ag(S), where S is a strategy with minimal cost for G in state
ν. For a subset of vertices U ⊆ V let a1, . . . , ak be a sequence
of actions that clears all vertices of U starting from state ν
with minimal cost maxi=1...k c(ai). 2 We write ag(U, ν) for
this minimal cost.

The cost of a strategy is the number of robots needed to
clear the environment according to the sequence of actions
defined by the strategy. Since we seek strategies with the least
number of robots, we will consider only strategies for which
at most one vertex at a time is swept. This approach is justified
by the following lemma whose simple proof is omitted.

Lemma 1: Let S = {a1, . . . , ak} be a strategy for G. Then
there exists a strategy S ′ with cost ag(S ′) ≤ ag(S) that
sweeps no more than a vertex at a time.

A. An example of Graph-Clear

We now work out a simple example outlining the connection
between Graph-Clear and practical surveillance scenarios. A

2Such sequences are not necessarily strategies, unless U = V , but they can
be thought of as partial strategies.
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surveillance graph is used to model complex environments. For
our illustration we choose to intuitively associate vertices with
rooms, and edges with connections between rooms (i.e. doors
or corridors). Fig. 2 shows a simple indoor environment and
one possible surveillance graph. A contaminated vertex is a
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Fig. 2. An example environment and one possibly associated surveillance
graph. Numbers inside vertices are the sweeping costs, and numbers on the
edges are blocking costs.

room that may hide an intruder, while a clear vertex is known
to be intruder-free. Intruders may also hide in connections
between rooms, therefore edges can also be clear or contami-
nated. Robots equipped with sensors are used to detect intrud-
ers. In our problem formulation, an intruder disappears as soon
as it is detected by a robot (i.e. it falls within its sensing range).
A blocking operation applied to an edge ensures no intruder
can pass through that connection without being detected by the
robots blocking it. Since our focus is on scenarios involving
robots with limited sensing capabilities, more than one robot
may be necessary to block large connections (see the values
displayed in Fig. 2). To detect all possible intruders inside a
room a sweeping operation is performed. Once again, since
robots have limited capabilities, multiple robots are requested
to make sure one room is free of intruders. Since a room may
have multiple entrances, it is necessary to block all of them to
prevent intruders from entering parts of the room that have
been swept already (recontamination). The recontamination
path concept adds significant challenges and asymmetries to
the problem. In fact, while we assume that robots are capable
of detecting intruders only when they fall within a limited
sensing range, our definition of recontamination implies that as
soon as recontamination is possible, it immediately occurs. We
therefore suppose intruders have complete knowledge of the
environment and of the robots’ positions, and they may move
with unbounded speed on continuous paths to take instanta-
neous advantage of the existence of recontamination paths.
The Graph-Clear problem asks how to schedule sweeping
and blocking operations so that eventually the environment
is completely cleared using the least number of robots. Fig.
3 shows a possible strategy to solve the Graph-Clear problem
on the environment depicted in Fig. 2.

Before Graph-Clear can be of practical relevance in a
robotic scenario, it requires a method to partition an en-
vironment into regions which then become vertices in the
surveillance graph as well as implementations for the sweeping
and blocking actions. A first solution extracting surveillance
graphs from occupancy grid maps is presented in [1]. It is
based on detecting narrow parts of the environment using its
Voronoi Diagram. The method not only extracts the graph,

ν(G) a c(a)
CCCCC CCCCC 10000 10100 5
RCCCC BCBCC 00010 10101 6
RCCRC BCBCB 01100 11011 12
RRRRC BBRBB 00001 00011 7
RRRRR RRRBB 00000 00000 0
RRRRR RRRRR

Fig. 3. A possible strategy to solve the Graph-Clear problem associated with
the graph shown in Fig. 2. The first column displays the status, the second the
applied action, and the third the cost. The reader should note that in the third
row an action sweeping two vertices at the same time is applied, and that a
final action removing all blocks is executed in the end (with 0 cost). The cost
of this strategy is 12, i.e. the maximum value read in the third column. It is
easy to see that such strategy is not optimal.

but it also assigns appropriate weights based on given sensing
abilities of the robots, and a predetermined clearing method for
vertices. From now onwards we assume that for a given sensor
model the corresponding surveillance graph is available.

Before proceeding it is worth considering a fundamental
difference between weighted edge-searching and Graph-Clear,
apart from the motivation presented in Section I and Fig. 1.
This difference results from the addition of weights. Recall
that in edge-searching a single move is either 1) moving along
an edge, 2) placing a robot on a vertex or 3) removing a
robot from a vertex. In weighted edge-searching these moves
additionally receive an integer representing the number of
robots participating in the move. The weight on the edge
or vertex determines how many robots are needed so that
the move clears the edge and guards the vertex. This seems
like a straightforward extension of the previous model, but
it has counterintuitive consequences. Consider the example in
Fig. 4. Therein, allowing simultaneous moves can improve the
number of robots needed. This results from the fact that the
guarding operation on one vertex can need more than the sum
of the slide and guarding operations towards all neighbors.

8

4 4

44

12

4

8

4000

8

0

4 4
4

4

0

0

4 4
4

4

a) b)

c)

Fig. 4. An example that illustrates the consequences of allowing simultaneous
moves in weighted edge-searching. Part a) shows a graph with its weights.
Part b) shows the graph with eight robots on the top vertex and none in the
bottom vertices. The arrows indicate two sliding moves with four robots that
finish clearing the graph with eight robots when executed simultaneously. Part
c) shows how to clear the graph with strictly sequential moves with the same
recontamination rules but needing more robots.

IV. THE COMPLEXITY OF GRAPH-CLEAR

In one of our former papers we stated a theorem claiming
NP-hardness of the Graph-Clear problem [34], but the full
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proof was omitted due to space constraints. We here offer
the complete proof based on the new notation developed in
Section III. The proof is mainly an adaption of the proof of
NP-completeness of edge-search on a graph presented in [20].
The key idea is to substitute complete graphs used in [20]
with stars defined in the following. The method constructs
a surveillance graph with all weights equal to one and the
statement hence also holds for the simpler case of unweighted
surveillance graphs. Throughout this section all weights are
assumed to be equal to 1.

We first define the concept of stars and prove a bound on
the clearing cost.

Definition 14 (Stars): A star of order n, written Gn, is a
surveillance graph that is a tree with n+ 1 vertices v0, . . . , vn
and n leaves. The vertex vs that is not a leaf shall be called
center.

Lemma 2: Let Gn be a star of order n. Then ag(Gn) =
n+ 1.
Proof: Let v0 be the center of Gn. According to Eq. 1 the cost
to clear v0 is n+ 1. To clear Gn with n+ 1 agents, clear v0
first and block all its n edges. Then use the n+ 1-th robot to
clear each leaf, (see Fig. 5).�

a) b) c)

d) e) f)

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

vn

v1

vs

v2

Fig. 5. The construction of an optimal strategy for a star. Cleared and
contaminated vertices are grey and white respectively. Blocked edges are
marked with as double-stroked line. First all leaves are cleared, leaving the
edge to the leaf blocked. For leaf vi,i = 1, . . . , n the total cost while clearing
it is i+ 1. Finally the center vertex is cleared with cost n+ 1.

Let us consider the following decision version of the Graph-
Clear problem:

INSTANCE: G = (V,E,w), a surveillance graph with
w(x) = 1 ∀x ∈ V ∪ E, and a natural number P

QUESTION: is ag(G) ≤ P ?
Proving that this problem is NP-hard relies on a polynomial

reduction to the min-cut into equal sized subset problem
(MCIESS from now on), a problem known to be NP-complete
[21]. MCIESS is posed as follows.

INSTANCE: An undirected graph G = (V,E) with an even
number of vertices, and a natural number K.

QUESTION: is there a partition of V into two subsets V1

and V2 with |V1| = |V2| = 1
2 |V | such that |{(u, v) ∈ E : u ∈

V1, v ∈ V2}| ≤ K?
Theorem 1: The decision version of Graph-Clear is NP-

hard.
Proof: Let G = (V,E) and K > 0 be an instance of the

MCIESS problem. Let n = |V |, d = maxvi∈V {degree(vi)},
N = 6(d + K) and M = nN(n + 2). An instance H =
(U,F,w), P of the Graph-Clear problem is built in polynomial
time as follows:

1) for each vi ∈ V create a star of order M called Ci (i.e.
Ci = GM , with i = 1 . . . n)

2) let CA be an additional star of order M (i.e. CA = GM )
3) add edges between leaves of the star with at most one

edge for each leaf:
a) add nN edges for each pair Ci, Cj , i 6= j, note that
i, j ∈ {1, . . . , n, A}

b) add N more edges between each Ci and CA
c) add 3 more edges between Ci and Cj if (vi, vj) ∈ E

4) w(x) = 1 ∀x ∈ U ∪ F
5)

P = (M + 1) +
(n

2

)2

nN + 3K

Note that it is possible to give each leaf v of a Ci at most
one edge since we have M such leaves and never add more
than M − 1 edges in total to any Ci. Fig. 6 visualizes the
construction. All vertices that received an edge during the
construction will be called connectors, and all that did not
remain leaves. There is at least one leaf remaining for each
Ci. We now show that the Graph-Clear instance H,P admits
a positive answer if and only if the MCIESS instance G,K
does.

C1

C2

C3

CA

Cn

3 nN

v1

v2

v3

vn

vm
vs

vnN

vnN+1

vnN+2

vnN+3

vnN+4

v2nN+3

a)
b)

c)

d)

C1

v1

nN

nN

3

3

3

3

3

3
nN + N

nN + N

nN + N
nN + N

nN + N

nN

nN

nN

nN
nN

nN nN

nN

Fig. 6. An illustration of the large graph constructed from an instance of the
MCIESS. Part a) shows the constructed surveillance graph from the MCIESS
graph in part b). A star is represented by a cloud, a bundle of nN or more
edges by a double line and 3 edges by a thick line. Part c) is a close-up of
the star C1 and its edges to other star. In part d) C1 is shown in more detail
with its center, connectors and leaves.

Assume the instance G,K admits a positive answer, i.e.
we have a partition of V into V1 and V2 s.t. K ′ ≤ K edges
connect V1 = {v1, . . . , vn/2} and V2 = {vn/2+1, . . . , vn}.
Let us then consider the following strategy S for H: clear
C1, . . . , Cn/2, CA, Cn/2+1, . . . , Cn in this order. Being more
specific, according to lemma 2, the cost to clear the leaves
and center of C1 is M + 1. The number of edges from C1 to
other Cis is at most n2N+N+3d < M and hence there is at
least one vertex in C1 with degree one. We start clearing C1

by clearing each degree-one vertex. Then we clear the center
and keep all its edges blocked. This procedure costs M + 1.
After having cleared the center we remove all blocks from
edges to leaves while retaining those to connectors, which are
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still contaminated. The number of remaining blocks is at most
n2N + N + 3d. Consider a path between the clear center of
C1 and another Ci. This path is not a recontamination path
because the edge to C1 is blocked. An additional cost of 2 is
incurred to move this block to the edge ending on the center
of Ci. Doing this for all connectors of C1 costs at most n2N+
N + 3d + 2. Hence with cost M + 1 we can clear C1, and
leave at most n2N + N + 3d blocks in edges in other Cis,
effectively reducing the cost needed to clear them.

Clearing C2 now has cost no higher than (M − nN) +
1, since it is equivalent to clearing a connected GM−nN as
nN edges to C2’s center have been cleared after clearing C1.
Additionally we still have the cost of blocking edges from the
first step. So the total maximum cost is (M−nN)+1+n2N+
N+3d. After clearing C2 the total number of blocks that have
to remain is 2 · (n2N +N + 3d)− nN , since we do not have
to block the nN edges between C1 and C2 anymore, but all
those between C2 and all contaminated Cis. Generalizing this
formula, the cost of each step 2 ≤ i ≤ n/2 is:

[M−(i−1)nN ]+1+(i−1)(n2N+N+3d−(i−2)nN) (3)

which gives us at the worst step n/2:

M + 1 + (
n

2
− 1)(

n

2
+ 1)nN + (

n

2
− 1)(N + 3d) < P

For CA we need at most:

M + 1 +
(n

2

)2

nN + 3K ′ ≤ P

For Ci with n/2 + 1 ≤ i ≤ n an upper bound analogue to
formula 3 applies. Hence there exists a strategy for H of cost
at most P . By definition this means ag(H) ≤ P , so the answer
to the instance H,P is positive as well.

For the converse suppose that ag(H) ≤ P . This means there
exists a strategy for H of cost not higher than P . By Lemma
1 while clearing H using the optimal strategy there has to be
a step at which n/2+1 centers of the Cis are cleared and n/2
are not. Consider the step of clearing the n/2+1-th center, and
let Cj be the star it belongs to. Let us assume that Cj 6= CA.
The least possible cost at this point is:

(M + 1) +
(n

2

)2

· nN +
n

2
N.

This bound is derived as follows: M + 1 is the cost to
clear the center of Cj (Eq. 1), (n2 )2nN is the cost to block
paths between clear centers and contaminated centers different
from Cj and n

2N is the cost to block paths between clear
centers and CA. But (M + 1) +

(
n
2

)2 · nN + n
2N > P ,

which is a contradiction since the strategy has cost not higher
than P . So Cj = CA. Clearing CA costs M + 1 and
blocking the cleared centers from the contaminated centers
costs at least

(
n
2

)2
nN , resulting from the nN edges added

in construction step 3a between the
(
n
2

)2
pairs of stars. The

additional edges from step 3c between cleared and contam-
inated centers result from the original instance of MCIESS,
but there can be at most 3K such edges between these centers
since P = (M + 1) +

(
n
2

)2
nN + 3K. Hence there are

at most K edges between vertices in the original MCIESS
instance that correspond to cleared and contaminated stars.
Hence, we can define V1 = {vi : Ci has clear center} and
V2 = {vj : Cj has contaminated center} and get a cut
between V1 and V2 with at most b(3K+ 2)/3c ≤ K edges. �

V. LABEL-BASED CONTIGUOUS STRATEGIES ON TREES

The result presented in Section IV leaves little hope of
finding optimal strategies for all instances of Graph-Clear with
polynomial time complexity. This stimulates research to study
more constrained versions of the problem. In particular we will
show that if one restricts the attention to contiguous strategies
on trees rather than graphs, then optimal solutions can be
found with time complexity polynomial in the number of ver-
tices. Alternatively, one can seek for approximated solutions
for graphs, along the spirit of the algorithms presented in [35].
Approximate algorithms for Graph-Clear are currently under
investigation, but will not pursued any further in this paper.

From now onwards we assume to operate on trees (i.e.
connected acyclic graphs), and will therefore use the letter
T rather than G. The problem of converting a surveillance
graph into a tree is discussed in [34]. Furthermore, we will
also impose the requirement that all strategies are contiguous.
Also presented in [34] is the first algorithm to compute
contiguous strategies on trees, built upon previous work by
Barriere et al. [3]. The algorithm does not always produce
optimal strategies, thus motivating the extension presented in
Section VII. Nonetheless we will shortly present it, because
it introduces concepts needed also for the optimal algorithm
presented later. In fact the new algorithm presented in Section
VII can be seen as a generalization of the one illustrated in
this section.

For sake of completeness, we mention there are also algo-
rithms for computing non-contiguous strategies on trees [36],
[37], but they will not be discussed further in this paper as
their performance is still hard to evaluate.

The algorithm computing contiguous strategies from [34] is
as follows. Numeric labels associated with edges are computed
as described below, and then a strategy is produced based on
the labels’ values. Let T = (V,E,w) be a surveillance tree.
For each edge (vx, vy) two labels λvx and λvy are defined as
follows:
• λvx

is the cost of clearing the contaminated subtree rooted
in vy after clearing vx.

• λvy is the cost of clearing the contaminated subtree rooted
in vx after clearing vy .

Labels are computed bottom-up starting from edges incident
on leaves. Due to the symmetry in the definitions of λvx

and
λvy

, we discuss only the computation of λvx
. Consider an

edge e = (vx, vy). If vy is a leaf node, i.e. degree(vy) = 1,
then

λvx
(e) = w(vy) + w(e) = s(vy)

since in order to clear vy it is necessary to block the only
edge it has. Next, let us assume vy is an internal node, i.e.
degree(vy) > 1. Let us indicate the k neighbor vertices
different from vx as v1, . . . , vk, k = degree(vy) − 1. Let
ei = (vy, vi), i = 1 . . . k, and let us define
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ρi = λvy (ei)− w(ei). (4)

Reorder vertices so that ρi ≥ ρi+1. The subtree rooted at
vy will be cleared according to the following strategy. First
block all edges e1, . . . , ek and clear vy . Then fully clear the
subtree rooted at vk. After clearing the subtree rooted at vk no
block on ek is necessary anymore, and then remove it. Next,
clear the contaminated subtree rooted at vk−1 and then remove
the block from ek−1. Next, clear the subtree rooted at vk−2,
and so on. Accordingly, in this strategy the total cost when
clearing the contaminated subtree rooted at vi is composed
of all blocks at the other neighbors and the costs to clear the
subtree itself, represented by the label λvy

(ei). This becomes:

c(vi) = λvy
(ei) +

i−1∑
l=1

w(el). (5)

The value for λvx(e) is then computed as follows:

λvx(e) = max{s(vy), max
i=1,...,k

{c(vi)}}.

Fig. 7 illustrates this approach graphically. Having ordered

λvx(e)

e1e2e3e4e5

e
a) b)

c) d)

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

vx

v1v2v3v4v5

vy

Fig. 7. A contiguous strategy on a tree is executed based on the labels on
edges. Blocked edges are crossed through twice, cleared vertices are gray. A
vertex with dashed lines attached represents an entire subtree rooted at that
vertex. A subtree being cleared is marked with the corresponding root vertex
drawn in thick dashed lines. The label associated to this procedure is shown
in a) with the direction of the robots marked by an arrow.

all neighboring vertices so that ρi ≥ ρi+1 ensures that λvx

is minimized3. Once all labels are computed, a strategy Sv
that starts clearing the tree T from a vertex v is defined as
follows. Let v1 . . . vk be all k vertices neighbors of v. First,
block all edges to v and clear v. Then, recursively clear the
contaminated subtree rooted at vi, with i from k to 1, using
strategy Svi

while blocking all edges e1, . . . , ei−1. The cost
of Sv is the following:

ag(Sv) = max
{
s(v), max

i=1,...,k
{c(vi)}

}
. (6)

Once all labels have been computed it is possible to find the
vertex v for which the quantity defined in Eq. 6 is minimized.
Such vertex is the starting point to clear the tree.

3To show this assume there was an optimal ordering s.t. ρi < ρi+1 and
show that you can then swap vi and vi+1.

Given a surveillance tree, labels λv can be computed in
O(n log d) where n is the number of vertices and d the
maximum degree across all vertices. The complete algorithm
is presented in [34]. However, it is possible to produce specific
instances of Graph-Clear where the depicted algorithm does
not yield an optimal contiguous strategy. This limitation mo-
tivates the formalism and ideas presented in the next section.

VI. EXISTENCE OF OPTIMAL CONTIGUOUS STRATEGIES
THAT ARE PROGRESSIVE

This section shows that recontamination is not necessary for
optimal contiguous strategies on trees. This result is essential
for the construction of such strategies in polynomial time
described in Section VII. The proof is based on the concept
of cuts which we will introduce first.

A. Cuts

Definition 15 (Cut): Let T be a surveillance tree. A cut of
T is a subset of V (T ) whose induced subgraph is connected.
We will indicate cuts with the letter γ, and the cut γ = V (T )
is called full cut. Γ is the set of all cuts of T .

Cuts can be thought of as describing all cleared vertices of
a tree T . Hence, it is useful to describe the cost of blocking
its boundary so that recontamination does not occur.
Notation: Let G be a surveillance graph and X ⊂ V (G). Then:

δX = {(x, y) ∈ E(T ) | x ∈ X ∧ y /∈ X}.
δX is the subset of edges connecting vertices in X to vertices
not in X .

Definition 16 (Cut blocking costs): Let γ be a cut of T . Its
cut blocking costs is

b(γ) =
∑

e∈δV (γ)

w(e). (7)

In colloquial terms b is the cost to prevent recontamination
of γ once it is fully cleared. By definition, a cut γ can be
cleared by executing a sequence of actions with cost ag(γ, ν),
given that T is in state ν. As a shorthand we say that we
execute a cut γ at cost ag(γ, ν). Consequently, executing
γ modifies the state of T . Let us formalize the notion of
sequential execution of cuts and define its cost4.

Definition 17 (Cut sequence and its cost): Let Γ be the set
of all cuts for a surveillance tree T , and let T be in state ν1.
We define a cut sequence S as a sequence of r cuts γ1, . . . , γr

from Γ where γr is a full cut. At step l = 1, . . . , r cut γl is
executed modifying the state νl to νl+1. The cost of S at step
l is cl = ag(γl, νl), and the cost of S is:

c(S) = max
1≤l≤r

(cl).

If all cuts in a cut sequence S are executed, T is eventually
cleared because the last cut is a full cut by definition. It is
immediate to see that such a sequential execution of cuts
leads to a strategy for T , hence the use of the letter S for

4In the sequel, when talking about multiple cuts we will use the term
sequence when the order matters, as opposed to sets.
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both strategies and cut sequences. The two different terms
are introduced because they focus on different perspectives. A
strategy is a sequence of actions and hence specifies exactly
which sweep and block actions are taken at every step. In
contrast, a step in a cut sequence only describes which vertices
have to be in clear state, namely those belonging to the cut.
How vertices of a cut are cleared depends on the strategy
that executes it and is not specified by the cut. For example
γ1 = V (T ) is the simplest cut sequence, but executing γ1

involves finding a strategy for all of T at once. On the other
hand, cut sequences that add at most one vertex from one cut
to the next can be immediately converted into a strategy.

B. Recontamination does not help

Results presented in this subsection are similar to the work
by Bienstock and Seymour [23] for edge-search, and their
definitions are herein adapted for Graph-Clear. In particular
they introduced the concept of crusades that we borrow
and call simple cut sequence. An analogous crusade-based
construction was also used in [3]. Although the basic ideas
are similar, many mathematical technicalities are different, and
details are therefore fully worked out in this paper.

Definition 18 (Simple cut sequence): Let T be a surveil-
lance tree. A simple cut sequence in T is a cut sequence
S = γ1, . . . , γr such that |γ1| = 1 and |γi \ γi−1| ≤ 1 for
all 2 ≤ i ≤ r. For simple cut sequences, with a slight abuse
of notation we write vi for γi \ γi−1 6= ∅. If γi is a cut in a
simple cut sequence, its frontier f(γi) is defined as follows:

s(v1) if i = 1

b(γi) + s(vi)−
∑

e∈δvi∩δγi

w(e) if i > 1, γi \ γi−1 6= ∅

b(γi) if i > 1, γi \ γi−1 = ∅ (8)

The frontier of a simple cut sequence S is:

f(S) = max
1≤i≤r

{
f(γi)

}
. (9)

The definition of simple cut sequences allows steps where
|γi \ γi−1| = 0 . This situation may arise in the uninteresting
case γi = γi−1, or when |γi−1 \ γi| > 0. This latter case
corresponds to recontamination of all vertices in γi−1 \ γi.
Let us now define progressiveness for cut sequences.

Definition 19 (Progressive cut sequence): A cut sequence
is a progressive cut sequence if γ1 ⊆ γ2 ⊆ . . . ⊆ γr.

Note that progressiveness of a cut sequence is conceptually
different from progressiveness of strategies. A progressive
cut sequence can be executed by a strategy that is not pro-
gressive (consider for example the progressive cut sequence
γ1 = V (T )). Given a surveillance tree T we will now show
that an optimal contiguous strategy implies the existence of
an optimal contiguous strategy that is also progressive. This is
done in three steps by first considering simple cut sequences,
then cut sequences that are both simple and progressive and
finally connecting these to existence of an optimal contiguous
strategy that is progressive. These three steps are formalized
with the following claims.

Lemma 3: Let T be a surveillance tree, and let Sc be an
optimal contiguous strategy for T of cost ag(Sc) ≤ k. Then
there exists a simple cut sequence S for T such that f(S) ≤ k.
Proof: See Appendix.

Next, it is possible to show that for any simple cut sequence
of bounded frontier, there is a simple progressive cut sequence
whose frontier is not greater.

Theorem 2: If there exists a simple cut sequence S in T
with f(S) ≤ k, then there exists a simple progressive cut
sequence in T with frontier not greater than k.
Proof: See Appendix.

Finally, by connecting simple progressive cut sequences to
strategies we can show the main result of this section.

Theorem 3: Let T be a surveillance tree, and let Sc be an
optimal contiguous strategy for T of cost ag(Sc). Then there
exists a progressive contiguous strategy of cost ag(Sc).
Proof: See Appendix.

The main message of this section is that it is possible to
construct optimal contiguous strategies on trees even when
imposing that no recontamination should occur. It should be
noted that the same can be shown to hold for graphs, but with
a slightly more complicated proof of theorem 2. Such a proof
for graphs and including non-contiguous strategies would turn
the NP-hardness proof of Section IV into an NP-completeness
proof, since strategies without recontamination are in NP. For
all practical purposes the result on trees suffices since the
algorithm in the next section is restricted to trees.

VII. OPTIMAL CONTIGUOUS STRATEGIES: A POLYNOMIAL
ALGORITHM

Given that we established the existence of at least one
optimal contiguous strategy that is progressive, our goal is
now to devise an algorithm that computes one efficiently. To
do so, we first introduce a final class of cut sequences, called
full cut sequences, and identify some notable properties. Based
on these findings, we next develop an O(n2) algorithm to
compute an optimal contiguous strategy.

A. Full cut sequences

Let T be a fully contaminated surveillance tree and let vy be
the first vertex cleared by an optimal contiguous progressive
strategy. Since vy will never be recontaminated we can con-
sider the subtrees at each neighbor v1, . . . , vk of vy separately.
More precisely, for each i = 1, . . . , k we will write Ti for the
subtree of T rooted at vy with all edges of vy removed except
the edge to vi (see Fig. 8). Each of the Tis can be thought of
as a surveillance tree with the same weights induced by the
w function defined on T and its own state. Given that a cut
sequence alters the state of T , we will indicate with νli the
state of Ti before γl is executed on T .

We want to construct an optimal cut sequence Svy which
starts clearing vy first, and then removes all contamination
from T . Its first cut is γ1 = {vy}, which we can execute
with cost ag(γ1, ν1) leading to a new state ν2. Note that,
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Fig. 8. Given vy we define subtrees Ti as seen in the figure.

accordingly to the notation introduced above, ν2 induces a
state ν2

i for each Ti. The goal is now to find optimal cut
sequences for each Ti starting at state ν2

i that we can use to
continue Svy

and turn it into an optimal cut sequence for the
whole tree T . The building blocks for these sequences are
identified by the following definition.

Definition 20 (Full cut sequence): Let T be a surveillance
tree in state ν1 = {C, . . . , C}, vy ∈ V [T ], and Γvy

the set of
all cuts containing vy . A full cut sequence for vy , indicated
as S̄, is built as follows. Sort all cuts of Γvy

s.t. ag(γ, ν1) is
increasing. All cuts with identical ag(γ, ν1) are additionally
sorted with b(γ) increasing. First, add γ1 = {vy} to S̄. Next,
add the first cut of Γvy with b(γ) < b(γ1). Then, add every
next cut γ from Γvy

with the next larger ag(γ, ν2) such that
b(γ) is smaller than for the previously added cut. Repeat this
process until the full cut is added to S̄.

The reader should observe that since by definition the full
cut has b(γ) = 0 this definition is well posed for every T
and terminates after a finite number of steps. Note that we did
not require that a full cut sequence be either progressive or
simple. A full cut sequence S̄ for vy has a useful property that
ag(γl, νl) = ag(γl, ν2) for all 2 ≤ l ≤ r. This is formalized
by the following more general lemma.

Lemma 4: Let S = γ1, . . . , γr be a cut sequence such that
ag(γl, νl) is monotonically increasing for all indexes l within
the range b ≤ l ≤ r.5 Then for all b ≤ l ≤ r:

ag(γl, νb) = ag(γl, νl).

Proof: See Appendix.

Next, for each Ti let S̄i be a full cut sequence for vy . It is
worth observing that by definition vy ∈ Ti for each Ti, so a
full cut sequence for vy in Ti is well defined. For each i, let
us indicate cuts in S̄i as γji . To each cut γji ∈ S̄i with j ≥ 2,
i.e. excluding the first cut {vy}, associate a value ρji defined
as follows:

ρji = ag(γji , ν
j
i )− b(γj−1

i ) for j ≥ 2 (10)

The reader should notice the similarity between Eq. 10 and
Eq. 4, and in fact the latter generalizes the former. Let

Γ̄ =
⋃

i=1,...,k

S̄i \ {vy}

5This is the case for full cut sequences picking b = 2. For b = 1 the lemma
does not necessarily hold for full cut sequences since the cost for executing
γ1 = {vy} is allowed to be greater than subsequent costs.

and order them with ρ increasing. This ordering is consistent
with the ordering of each subsequence by construction of full
cut sequences. Notice that γ1

i = {vy} for all i and hence for
each the first cut is removed, which is also the cut for which
ρji is not defined and for which the prerequisites for lemma
4 do not hold. Ties between cuts coming from different Ti
can be arbitrarily resolved. Write the ordered sequence Γ̄ as
{γ̄2, . . . , γ̄r}. Finally, create a cut sequence Svy = γ1, . . . , γr

for T from Γ̄ as follows:

γl =

 {vy} l = 1

(γl−1 \ Ti) ∪ γ̄l l = 2, . . . , r ∧ γ̄l ⊆ Ti
(11)

In colloquial terms, at each step l we execute the cut γ̄l

in a subtree Ti, while maintaining clear all vertices from all
other subtrees from the previous step l − 1. Note that it is
necessary to remove Ti from γl−1 to keep only cleared vertices
in other subtrees and have cleared vertices in Ti to be exactly
γ̄l (second case in the definition above). This is due to the fact
that we have not ruled out recontamination yet. We can now
introduce the main results of this subsection, namely that Svy

is optimal.
Theorem 4: Svy

is an optimal cut sequence for T .
Proof: See Appendix.

B. Constructing cut sets

Theorem 4 provides the basis for a recursive construction
of optimal cut sequences starting at the leaves and associating
them to edges, much like labels defined in Section V. Similarly
to the label-based algorithm, for each starting vertex the
algorithm computes the best contiguous progressive strategy
and its cost starting from that vertex. Then, looking at the costs
of these these n strategies the optimal one can be retrieved. It is
immediate to see that if all full cut sequences are progressive,
then so is Svy

.
A brute force approach is not viable because we need to

consider the set of all cuts for finding full cut sequences
and this set grows exponentially in the number of vertices.
However, we can construct full cut sequences more efficiently
according to a bottom up paradigm. We first show how to start
the recursive construction at the leaves and then show how to
find full cut sequences efficiently.

We adopt the same perspective as in Section V, i.e. let
vx and vy neighbors, e = [vx, vy], and v1, . . . , vk with
k = degree(vy)− 1 are all neighbors of vy different from vx
(see Fig. 7 and Fig. 9). We now associate a full cut sequence
S̄vx

(e) to e coming from direction vx, similar to the label
λvx(e). Note that S̄vx(e) is a full cut sequence for vx in the
tree Ty given by removing all edges from vx except e (see
Fig. 9). If vy is a leaf, then k = 0, i.e. its only neighbor is vx.
In this case it is immediate to compute the right cut sequence:

S̄vx
(e) = {vx}, {vx, vy}.

Otherwise, if k > 0 we consider v1, . . . , vk with edges ei =
[vy, vi], i = 1, . . . , k. Let S̄vy

(ei) be the full cut sequence
on edge ei coming from direction vy . By virtue of theorem
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v2v1

vy

e1 e2

vx

e

S̄vy (e1) S̄vy (e2)

S̄vx(e)

v2v1

vy

vx

v2v1

vy

Ty

T [vy]

v2

vy

v1

vy

T1 T2

S̄vy (e1) = {vy}, {vy, v1} S̄vy (e2) = {vy}, {vy, v2}
Svy = {vy}, {vy, v2}, {vy, v2, v1}

S̄vx
(e) = {vx}, V (Ty) = {vx, vy, v2, v1}

S̄vx
(e) = {vx}, {vx, vy}, {vx, vy, v2}, V (Ty)

S̄vx
(e) = {vx}, {vx, vy}, V (Ty)

1)
2)
3)

Possibilities for S̄vx
(e)

Fig. 9. Illustration of the cut sequences associated to edges and the
subtrees involved in the construction. There are three possibilities for S̄vx (e),
depending on the costs of the cuts. E.g. if weights on the tree are s.t. executing
{vx, vy} costs as much as executing the full cut V (Ty) right away, then the
first possibility is the full cut sequence. Otherwise, if {vx, vy} costs less and
has smaller blocking cost than {vx}, then the second possibility is the full
cut sequence, and so on.

4 we can construct an optimal cut sequence Svy , as defined
by Eq. 11, which clears the subtree T [vy] rooted at vy after
removing e (see Fig. 9). If all vi are leaves this corresponds to
exactly the same local strategy that the algorithm from Section
V produces. This is evident if one compares Eq. 4 and Eq. 10
and keeps in mind that cuts are sorted with ρ increasing.

We now need to find a full cut sequence for Ty , where Ty
is the analogue of the trees Ti but from the perspective of
vx towards vy instead of vy towards vi (see Fig. 9). This full
cut sequence can be associated to e and written as S̄vx

(e)
to be able to continue the recursion. The first cut is trivially
{vx}. Next, we can obtain the remaining cuts from the already
available Svy instead of looking at all possible cuts. One
observation is crucial to this construction, namely that only
cuts that correspond to a step in the execution of Svy

need to be
in S̄vx

(e). Clearly, one needs to add vx to all cuts of Svy
, since

vx /∈ T [vy]. For the example with all v1, . . . , vk leaves this
leads to cuts {vx, vy}, {vx, vy, vk}, . . . , {vx, vy, vk, . . . , v1}
(assuming that indices are ordered by ρ as in Section V). We
can now obtain a full cut sequence by selecting all cuts from
this set that satisfy the criteria outlined in definition 20. The
following argument validates this claim.

Theorem 5: Let S̄vx
be a full cut sequence for vx in Ty

and Svy = γ1, . . . , γr constructed as before. If γ ∈ S̄vx and
γ 6= {vx}, then ∃l ∈ {1, . . . , r} s.t. γl ∈ Svy has ag(γl ∪
{vx}, ν1) ≤ ag(γ, ν1) and b(γl ∪ {vx}) ≤ b(γ).
Proof: See Appendix.

Theorem 5 implies that we can get a full cut sequence S̄vx

to associate to e by only considering the cuts arising from Svy
.

Algorithm 1 shows how to use the results from theorems 4 and
5 to compute an optimal strategy. Just like we did with labels
before, the algorithm recursively builds cut sequences on the
edges of a surveillance tree T with two directions for each
edge. To finally obtain ag(T ) we construct Svy

on T for each

vertex vy ∈ V (T ), and then the vertex with the lowest cost is
selected as the starting vertex. This is similar to the procedure
in Section V. Algorithm 1 presents this in pseudo-code and
returns ag(T ). Once the best vertex vy is found, translating
the cut sequence Svy

into a strategy is straightforward. In fact,
by following the edges and using the associated cut sequences
one can write Svy as a simple cut sequence which can be
immediately converted into a strategy.

The complexity of algorithm 1 is O(n2) and can be com-
puted as follows. Throughout the analysis it is important
to note that since we are dealing with a tree the number
of edges is m = n − 1, so eventually we compute the
complexity as a function of the number of vertices only.
Clearly, line 11 is the most costly part in which we have
to sort cuts when constructing Svy on T [vy]. However, the
number of cuts to be sorted is bounded by n due to the linear
construction which leads to a contribution of at most one cut
for a vertex in the tree. This is obvious from the fact that
|S̄vx
| ≤ 1 + |Svy

| = 2 +
∑k
i=1 |S̄i| − 1. But even better, each

S̄i is already sorted by ρ, so for constructing Svy we have to
merge degree(vy)−1 sequences which altogether are at most
of length n which can be done in O(log (degree(vy))·n). Line
11 is executed twice for each edge once in each direction, or in
other words degree(vy) times for each vertex vy . But the only
difference between two executions of line 11 at vertex vy is
that the full cut sequence from one edge ei is replaced by the
full cut sequence on another edge. More precisely, the edge e
from vx to vy of a previous execution of line 11 becomes one
of the edges ei towards vi in a subsequent execution while
one of the previous ei becomes e. Hence, we can reuse the
sorted Svy of the first execution of line 11 for subsequent
executions by just removing one of the cut sequences in a Ti
and adding one. This can be done linearly in n. Therefore we
only need to merge degree(vy) sorted sequences once for each
vertex which leads to

∑
vy∈V (T ) log (degree(vy)) ·n ≤ 2m ·n

and then reuse it for the degree(vy)−1 remaining executions
which can be done in

∑
vy∈V (T )(degree(vy)−1) ·n ≤ 2m ·n.

Hence the overall complexity is O(n2).

VIII. CONCLUSIONS

In this paper we presented a novel theoretical framework
to model surveillance tasks performed by multiple robots
with limited sensing capabilities. The approach we presented
has two major advantages. First, it produces coordination
plans, called strategies, that abstract from low level sensing
details. Limited sensing capabilities of robots in the team are
accounted for by assuming that multiple robots are needed
in order to perform the basic operations, i.e. blocking a
connection between two areas, or sweeping an area. Secondly,
by formalizing it into a well characterized graph optimization
problem we were able to leverage a significant amount of
former graph-related literature and gain significant insights
into its computational structure. After having established the
formal framework and determined its computational complex-
ity, we turned our attention to the tractable case of trees.
Surveillance graphs can be easily turned into surveillance
trees by permanently blocking edges that lead to cycles in
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1: Set all S̄v(e) to ∅ and initialize empty queue Q
2: Q.enqueue(leaves(T ))
3: while not Q.empty() do
4: vy ← Q.dequeue()
5: if degree(vy) = 1 then
6: vx ← neighbors(vy)
7: S̄vx

([vx, vy])← {{vx}, {vx, vy}}
8: else if ∃ neighbor vx s.t. S̄vx([vx, vy]) = ∅ then
9: k ← degree(vy)− 1

10: Let v1, . . . , vk be neighbors s.t. S̄vy
([vy, vi]) 6= ∅

11: Construct Svy
on T [vy]

12: Construct S̄vx
on Ty from Svy

13: S̄vx([vx, vy])← S̄vx

14: a← number of neighbors of vx s.t. S̄vx([vx, v]) 6= ∅
15: if a = degree(vx)− 1 then
16: Q.enqueue(vx)
17: else if a = degree(vx) then
18: for all v ∈ neighbors(vx) s.t. S̄v([v, vx]) = ∅ do
19: Q.enqueue(vx)
20: for all v ∈ V (T ) do
21: Construct Sv on T
22: ag(v)← c(Sv)
23: return minv∈V (T )(ag(v))

Algorithm 1: Cut strategy(T )

the graph. This approach is simple but not very effective,
and in [34] we have shown how to attack this problem more
effectively. We presented an algorithm for the special case
of trees and contiguous strategies that is optimal. Contiguous
strategies are more restricted, so in general one can expect
strategies that are not required to be contiguous to need less
robots. The existence of a polynomial algorithm capable of
producing an optimal non-contiguous strategy for trees is an
open question. In fact, in [37] we have recently discovered a
hybrid method that combines previous contiguous and non-
contiguous labeling methods and produces non-contiguous
strategies that in certain situations can outperform contiguous
strategies. This hybrid method, however, is based on a dynamic
programming approach and its complexity is pseudopolyno-
mial. This tradeoff therefore justifies the use of the optimal
algorithm for contiguous strategies presented in this paper with
polynomial complexity. Contiguous strategies are not only
interesting from a mere theoretical point of view. For example,
in certain situations recontamination of a cleared room should
be avoided because it could be used to deploy infrastructures
that would be negatively impacted by intruders.

The framework presented in this paper provides a solid
foundation for future research in this area, but also raises
some questions unanswered at the moment. The following
are some of the issues we believe to be most important.
First, throughout the paper we have assumed a deterministic
scenario, i.e. we did not contemplate the possibility of faulty
sensors, such as sensors affected by false positive or negatives.
This problem is currently being investigated and first partial
answers have recently been found [38]. Secondly, we have
defined Graph-Clear with the objective of minimizing the

number of robots needed to detect all intruders, but one could
aim for the optimization of different parameters. For example,
if one considers the motion model of the robots being used,
then one could look for strategies that are fast to execute,
or minimize energy consumption, etc. Finally, one issue is
the detailed implementation of sweep operations for a given
class of robots and sensors. This problem is currently being
investigated and preliminary results have been submitted for
publication.

APPENDIX

Proof of Lemma 3. Let Sc = {a1, a2, . . . , ar}, and let
γ1, . . . , γr be the subsets of vertices cleared by Sc during the
execution of its r steps. By lemma 1 we can assume that at
most one vertex is cleared at each step of Sc, and by hypothesis
Sc is contiguous. Therefore S = γ1, . . . , γr is a simple cut
sequence in T . Compare now Eq. 2 with Eq. 9, and Eq. 1
with Eq. 8. By substitution one can verify that c(ai) = f(γi)
(1 ≤ i ≤ r), and then f(S) ≤ k. �

The following lemma is needed in order to prove theorem
2. Its simple proof can be found in [3].

Lemma 5: Let γ1 and γ2 be two cuts of a surveillance tree
T = (V,E,w). Then

b(γ1 ∪ γ2) + b(γ1 ∩ γ2) ≤ b(γ1) + b(γ2)

Proof of Theorem 2. Out of all simple cut sequences with
frontier not greater than k choose S = γ1, . . . , γr satisfying
the following properties:

1)
∑
j f(γj) is minimal

2)
∑
j |γj | is minimal, subject to the previous constraint.

We will now show that such S is a progressive simple cut
sequence. This means:
a) |γi \ γi−1| = 1 for all 2 ≤ i ≤ r.
b) γ1 ⊆ γ2 ⊆ . . . ⊆ γr.

It is immediate to show that the property a) holds for
S. In fact, it cannot be the case that |γi \ γi−1| = 0,
because otherwise the simple cut sequence obtained from
S by excluding γi would invalidate property 1. Therefore
|γi \ γi−1| = 1.

We now show that property b) holds for S as well. First, for
an arbitrary index i let us consider γ∗ = γi−1∪γi. If f(γ∗) <
f(γi), then S∗ = γ1, . . . , γi−1, γ∗, γi+1, . . . , γr would be a
simple cut sequence violating property 1. Therefore

f(γ∗) ≥ f(γi).

With some work we can now derive a similar relationship
involving b(γ∗) and b(γi). Since property a) holds, vi = γi \
γi−1 is always well defined, i.e. vi 6= ∅. Let v∗ = γ∗ \ γi−1,
and rewrite the previous inequality using Eq. 8 explicitly:

b(γ∗) + s(v∗)−
∑

e∈δv∗∩δγ∗
w(e) ≥

b(γ) + s(vi)−
∑

e∈δvi∩δγi

w(e).

By construction v∗ = vi, so the inequality simplifies to:

b(γ∗)−
∑

e∈δv∗∩δγ∗
w(e) ≥ b(γi)−

∑
e∈δvi∩δγi

w(e). (12)
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In order to further simplify the expression let us observe that
there is exactly one edge between γi−1 and vi. If this was
not the case there would be a cycle in the tree T . Let e′ be
this unique edge. By construction γi ⊆ ({vi} ∪ γi−1), and
therefore e′ is the only edge in edges(vi) with both extremes
in γi. The exact same reasoning applies to γ∗ and hence we
get (remember v∗ = vi):∑

e∈δv∗∩δγ∗
w(e) =

∑
e∈δvi∩δγi

w(e).

Inequality 12 then reduces to b(γ∗) ≥ b(γi), i.e. what we
wanted. Let us turn our attention to vi−1 = γi−1 \ γi−2.
If vi−1 /∈ γi, then γ1, . . . , γi−2, γi, . . . , γr is a simple cut
sequence, violating property 1. Therefore vi−1 ∈ γi. Now
consider the set γ∗∗ = γi−1 ∩ γi. Since vi−1 belongs to both
γi−1 and γi, then γ∗∗ 6= ∅, and γ∗∗ is connected. Then, using
inequality 12 while applying lemma 5 we can then conclude
that b(γ∗∗) ≤ b(γi−1). Now consider the cut sequence:

S∗∗ = γ1, . . . , γi−2, γ∗∗, γi, . . . , γr.

S∗∗ is a simple cut sequence. Moreover, it is easy to show
that f(γ∗∗) ≤ f(γi−1). Start with:

f(γ∗∗) = b(γ∗∗) + s(vi−1)−
∑

e∈δvi−1∩δγ∗∗
w(e)

≤ b(γi−1) + s(vi−1)−
∑

e∈δvi−1∩δγ∗∗
w(e).

By simple set relations it follows that δvi−1∩δγi−1 ⊆ δvi−1∩
δγ∗∗ and then we get:

f(γ∗∗) ≤ b(γi−1) + s(vi−1)−
∑

e∈δvi−1∩δγi−1

w(e).

The right side of this inequality is f(γi−1), then

f(γ∗∗) ≤ f(γi−1) ≤ k.
Therefore S∗∗ is a simple cut sequence with frontier smaller
or equal than k. Moreover, it must be that |γi−1∩γi| ≥ |γi−1|,
otherwise we would violate property 2 with S∗∗. But |γi−1 ∩
γi| ≥ |γi−1| implies that γi−1 ⊆ γi, and then we have proven
property b) as well, thus completing the proof.�

Proof of Theorem 3. By the previous lemma and theorem the
existence of a progressive simple cut sequence with frontier
not greater than ag(Sc) is guaranteed. Let S = γ1, . . . , γr be
this progressive cut sequence. For 2 ≤ i ≤ r let vi = γi\γi−1,
and let v1 be the only element in γ1. S leads directly to a con-
tiguous progressive strategy by clearing the vertices vi in order.
First, consider v1. By simple substitution f(γ1) = s(v1).
Assume that γi is cleared with cost f(γi). At the end of
the step b(γi) agents are required to avoid recontamination of
γi. Adding vi+1 to γi has cost s(vi+1)−∑e∈δvi+1∩δγi w(e)
which leads to b(γi) + s(vi+1) − ∑e∈δvi+1∩δγi w(e) =
b(γi+1)−∑e∈δvi+1∩δγi+1 w(e) = f(γi+1) agents. Therefore
a progressive contiguous clearing strategy of cost not greater
than ag(Sc) exists. Since we started assuming Sc is optimal,
then so is ag(Sc) which concludes the proof. �

Proof of Lemma 4. The claim is true for l = b by
substitution. Let us now assume that ag(γl, νl) = ag(γl, νb)

for a certain value of l in the range b ≤ l < r and prove that
ag(γl+1, νl+1) = ag(γl+1, νb). By definition ag(γl+1, νb) is
the cost of the optimal strategy removing all contamination
from γl+1 in state νb. Consider the following strategy. Start
with T in state νb and execute γl. This will change the state of
the tree to νl+1. Then execute γl+1 starting from the current
state νl+1. The cost of this strategy is

ag(γl+1, νb) = max((ag(γl, νb), ag(γl+1, νl+1)).

This maximum cannot be ag(γl, νb) since by assump-
tion ag(γl, νb) = ag(γl, νl) < ag(γl+1, νl+1). Therefore
ag(γl+1, νb) = ag(γl+1, νl+1). �

Proof of Theorem 4. We started assuming that vy is the first
vertex cleared by an optimal progressive contiguous strategy
for T , so starting with γ1 = {vy} does not compromise the
possibility to get an optimal strategy. Let us consider l ≥ 2.
By construction, every cut γl has an associated cut γ̄l (see Eq.
11). Such γ̄l was constructed from a certain γji ∈ S̄i. We can
therefore associate each cut γl with l ≥ 2 with a couple of
indexes i and j such that γl originated from γji .

Let us now describe the costs of Svy and relate it to the costs
in the full cut sequences for each Ti. b(γl) is the blocking cost
in T after executing γl. The part of this blocking cost in Ti is
given by bli = b(γl∩Ti) and is equal to b(γji ) by construction.
The cost of executing γl is given by cl = ag(γl, νl). We can
relate cl to the costs inside each subtree Ti with the following
relationship:

cl = bl−1 − bl−1
i + ag(γji , ν

j
i ). (13)

Notice that νji of the cut sequence S̄i is identical to the state
that νl of the cut sequence Svy

induces on Ti. Eq. 13 follows
simply by construction. It results from keeping (γl−1 \ Ti)
blocked which costs bl−1− bl−1

i , and executing γji in Ti with
cost ag(γji , ν

j
i ). By lemma 4 and the observation that bl−1

i =
b(γj−1

i ), i.e. the blocking cost from the cut in S̄i right before
γji , we get (see Eq. 10):

cl = bl−1 − bl−1
i + ag(γji , ν

2
i ) = bl−1 + ρji (14)

Here the significance of ρ values formerly defined becomes
apparent. Notice the similarity to ordering subtrees in Section
V. In colloquial terms, the ordering with ρ increasing asks
for the next cut that can reduce the blocking cost while not
costing much to execute.

Now, let Ŝ be an optimal contiguous strategy that is progres-
sive and starts at vy . We will adopt a similar notation as for Svy

but addingˆto all terms. Due to lemma 1 we can assume that
Ŝ clears exactly one new vertex per step. Therefore, it can
be written as a simple progressive cut sequence γ̂1, . . . , γ̂n

with exactly n cuts. It follows that for every l = 2, . . . , n
we have one and only one i s.t. γ̂l \ γ̂l−1 ⊂ Ti. This allows
us to consider, for each Ti, a cut sequence given by all non-
empty γ̂l ∩ Ti for all l s.t. γ̂l \ γ̂l−1 ⊂ Ti. To identify these
cut sequences restricted to each Ti we use γ̂ji = γ̂l ∩ Ti,
again associating each step l in Ŝ with an γ̂ji . Hence, a similar
analysis as above for Svy applies and we get:

ĉl = b̂l−1 − b̂l−1
i + ag(γ̂ji , ν̂

l
i) (15)
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where now ν̂li is simply the state of Ti induced by ν̂l and equal
to ν̂ji , which is the state of Ti after execution of γ̂1

i , . . . , γ̂
j−1
i

in Ti. Now that we can describe Svy and Ŝ let us compare
the two and their costs. We will do so by replacing cuts in
the cut sequences γ̂ji with cuts from the full cut sequences
used to construct Svy

. In colloquial terms, we will show that
cuts from the full cut sequences are not more costly than
the optimal ones. For each i consider the cut sequence γ̂ji
in Ti with associated clearing cost ag(γ̂ji , ν̂

j
i ) and blocking

cost b(γ̂ji ). First, we want to remove all cuts γ̂ji which do not
reduce bl, i.e. have b(γ̂ji ) ≥ b(γ̂j−1

i ). It is evident from Eq.
15 that this removal does not increase bl at any step. Hence,
removal of such a cut γ̂ji can only lead to larger costs if it
increases the cost for a subsequent cut, i.e. ag(γ̂pi , ν̂

p
i ), for

some p > j. But if after removal of γ̂ji we have ag(γ̂pi , ν̂
p
i )

larger than before, then (through a similar argument as for
the proof of lemma 4) we have ag(γ̂pi , ν̂

p
i ) ≤ ag(γ̂ji , ν̂

j
i ) and

hence no overall larger cost. Therefore, we can remove all
such cuts without increasing the overall cost, which leads to
bl becoming a strictly decreasing sequence.

With a similar argument we can modify the sequence γ̂ji to
have ag(γ̂ji , ν̂

j
i ) strictly increasing. Notice that if ag(γ̂ji , ν̂

j
i ) ≥

ag(γ̂j+1
i , ν̂j+1

i ), then removal of γ̂ji and executing γ̂j+1
i in-

stead will not increase costs cl, since b(γ̂ji ) > b(γ̂j+1
i ) and

ag(γ̂j+1
i , ν̂ji ) ≤ ag(γ̂ji , ν̂

j
i ).

After these removals we are in a condition that satisfies the
hypothesis of lemma 4 and obtain:

ĉl = b̂l−1 − b̂l−1
i + ag(γ̂ji , ν̂

2
i ) = b̂l−1 − ρ̂ji (16)

It is now clear to see (looking at ρ) that replacing every cut
γ̂ji with a cut from the full cut sequence with equal or smaller
ag and adding all remaining full cuts, ordered by ρ, leads
to no increased cost. Hence we can turn Ŝ into Svy

without
incurring larger cost and hence Svy

is optimal. �

Proof of Theorem 5. Let γ ∈ S̄vx
. By definition vx ∈ γ. If

γ = {vx, vy} the claim is trivially true by noting that l = 1
with γ1 = {vy} and then ag({vy} ∪ {vx}, ν1) = ag(γ, ν1).

Otherwise, γ has one or more vertices in some Ti, i =
1, . . . , k. We can hence write the execution of γ as a new
sequence of cuts starting at γ̂1 = {vx}, γ̂2 = {vx, vy} and
continuing with cuts separated into Ti similar as for the proof
of theorem 4. Write γ̂3, . . . , γ̂t = γ for these cuts. Note that
this is not a cut sequence for Ty , but a only a sequence of
cuts because the full cut is missing. Again, as for theorem
4, γ̂3, . . . , γ̂t induces sequences of cuts in the subtrees Ti,
written γ̂ji . The only difference to the proof for theorem 4
is that we had two steps γ̂1 and γ̂2 prior to considering the
cuts in subtrees Ti, which means that vx and vy are both not
going to be recontaminated. Therefore, we can also apply the
same replacement method as for theorem 4 and all cuts γ̂ji can
be replaced with cuts from full cut sequences of Ti without
incurring larger costs.

Now, all γ̂ji are cuts that also appear in the full cut sequences
for Ti. The only significant difference to the proof of theorem 4
is that after this replacement there is a last cut in each sequence
γ̂ji which is not necessarily a full cut for Ti, so the sequence
is still not a cut sequence. Now, the last cut γ̂t is associated to
a last cut of some sequence γ̂ji in some Ti written γ̂pi . Since

γ̂pi ∈ S̄i due to the replacement method we have a cut γl in
Svy associated to it as well. By construction and from Eq.
14, Svy incurs no higher cost up until γl than the sequence
γ̂3, . . . , γ̂t. This is due to the fact that Svy

is based on all cuts
from the full cut sequences S̄i for each Ti while γ̂3, . . . , γ̂t

may have some cuts omitted. From Eq. 14 it is clear that
adding additional cuts from the full cut sequences S̄i can only
improve the costs since those cuts with ρ lowest are executed
first and after being executed can only decrease the overall
blocking cost. It follows that ag(γl ∪ {vx}, ν1) ≤ ag(γ, ν1)
and b(γl ∪ vx) = b(γl) ≤ b(γ). �
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