
1

Coordinated Search With Multiple Robots
Arranged in Line Formations

Andreas Kolling, Member, IEEE, Alexander Kleiner, Member, IEEE, and Stefano Carpin, Senior Member, IEEE

Abstract—In this paper we address the problem of detecting
intruders in complex bidimensional environments with a team
of robots arranged in line formations called sweep lines. Sweep
lines are used to coordinate the motion of multiple robots
and guarantee the detection of any number of arbitrarily fast
intruders, even when each robot has a limited sensor footprint.
We present a formalization of the problem, coined Line-Clear,
which requires the computation of sweep schedules to coordinate
the motion of multiple sweep lines using the fewest robots
possible. We provide a proof of NP-hardness of the general
Line-Clear problem based on results from graph-searching. An
algorithm to compute sweep schedules for simply-connected
environments, which additionally guarantees that the cleared
area is connected and not recontaminated, is then presented. We
analyze its complexity formally and in simulation experiments
and present solutions for a number of subproblems required
for an implementation of the algorithm. The analysis provides a
formal criterion for when the algorithm runs in polynomial time
and the experiments indicate that this criterion may be satisfied
for most environments in practice.

I. INTRODUCTION

This paper considers the problem of detecting all intruders
in a bounded, planar environment with obstacles using a team
of robots with a limited sensor footprint. Our goal is to develop
methods with guaranteed performance, i.e., all intruders shall
be detected in finite time irrespective of their capability for
evasive maneuvers. If each robotic searcher is equipped with
a sensor covering only a small subset of the environment, in
order to successfully complete this task robots need to tightly
coordinate their actions (see Figure 1). The concept of a sweep
line has been extensively used in computational geometry [1]
and is here adopted as the building block for robot cooperation.
Robots arrange themselves in configurations such that the
union of their sensor footprints covers a set of sweep lines that
are then moved through the environment. This arrangement
is relatively easy to implement in practice, and has found
extensive applications in search and rescue efforts by human
teams. In the past we have investigated this paradigm for the
problem where multiple robots are tasked with the detection of
all intruders in an indoor environment. In [2] we have shown
that given an occupancy grid of the environment it is possible
to algorithmically determine sweep schedules for lines, i.e., a
temporal sequence of coordinated sweeps such that all intrud-
ers are eventually detected. We have also presented a system

Andreas Kolling is with iRobot Corporation, Pasadena, CA, USA, e-mail:
akolling@irobot.com (corresponding author).

Alexander Kleiner is with FaceMap LLC, Malibu, CA, USA, e- mail:
a.kleiner@facemap.com.

Stefano Carpin is with the University of California, Merced, CA, USA,
e-mail: scarpin@ucmerced.edu.

Fig. 1. An illustration of the motivation for the formal model presented in this
paper and applied to a 2.5D environment, as in [4], [5]. Multiple unmanned
aerial vehicles are clearing an environment by following moving sweeps lines
and covering them with their sensors. The coordination of these movements is
essential for an efficient search strategy that uses fewer searchers. The figure
shows that a Line-Clear approach can be used also for cases like the one
depicted in the figure, where the sensors are not bound to the plane, but their
footprint can be abstracted with a line in the plane.

where robots achieve the same objective even if they are not
given any map [3] upfront and can only form sweep lines
by sensing their neighbors and obstacle boundaries locally. A
variant that considers 2.5D environments and unmanned aerial
vehicles has been presented in [4], including an experimental
validation. Initial attempts to optimize not only the number
of robots but also the time for sweep schedules have been
presented in [5], including experiments with simulated and
real unmanned aerial vehicles. This prior work confirmed the
practical importance of the sweep line paradigm in robotic
search, but a rigorous formal analysis was missing. In this
manuscript we fill this gap by providing a thorough theoretical
analysis of the approach to clear large environments using
robots arranged on moving sweep lines. We dub this strategy
Line-Clear. The contributions of this paper are the following:

• the Line-Clear problem is defined and formalized (Sec-
tion III);

• we prove that Line-Clear is NP-hard in Section IV;
• we analyze the special case of simply-connected envi-

ronments, i.e., possibly non-convex environments with
no holes, and we show that in this case the Line-Clear
problem is equivalent to a combinatorial problem whose
solution determines how to move sweep lines, where to
set them up, and when to remove them (Section V);

• we show how to solve the combinatorial problem and

2

compute sweep line schedules in simply-connected envi-
ronments (Section VI);

• we provide solutions for the subproblem of computing
shortest sweep lines and show experimental support for
our conjecture that connected and monotone Line-Clear
in simply-connected environments can be solved in poly-
nomial time.

Not all questions we raise in this paper can be answered
at this time. We restrict our attention to sweep schedules that
are connected and monotone. This means that the area of the
environment that has been cleared from intruders is connected
(in a topological sense) and that every area is cleared only
once (monotone). For other related pursuit-evasion problems
it has been shown that imposing monotonicity can lead to
solutions with higher cost but for others this is not the case
(see Section II). So far we have not investigated how lifting
these requirements would impact the algorithms we developed.

II. RELATED WORK

Our work is connected to a wide range of applications,
such as search, exploration, tracking, and surveillance. Each
of these has a long history in the robotics literature, and is
often connected to graph theory and computational geometry.
A comprehensive review is beyond the scope of this section,
and we provide only pointers to selected relevant contributions.
We focus on visibility-based pursuit-evasion as a natural
predecessor to our work and we also discuss other approaches
for search, pursuit and capture that arrange robots on lines,
as well as graph-based search models. Since our approach is
deterministic, we skip the rich body of literature related to
probabilistic approaches. From a robotics perspective, surveys
such as [6], [7], and [8] provide an excellent overview of the
different variants and assumptions that are made with regard
to search problems. An intereseting recent tutorial was also
presented in [9].

One of the first graph-based pursuit-evasion models, also
know as graph-searching, was introduced by Parsons [10].
In graph-search a number of searchers moves along edges
to catch an omniscient intruder with unbounded speed. The
concept of contamination is introduced to represent the pos-
sibility of the intruder being located in a part of the graph. If
an area is not contaminated it is said to be clear, and the goal
then becomes to turn all contaminated areas into clear areas
using the least number of searchers. A great deal of work has
been done in this domain and an overview of results can be
found in [11] and [12]. Starting from this model, numerous
variations were proposed. Node search, mixed search, and
connected search consider contamination on edges or vertices,
different capture conditions such as being on the same vertex
or on adjacent vertices, or require the cleared parts of the
graph to be connected. The most prominent question for
these graph-based problems usually relates to the number of
searchers needed to clear the graph. This value is commonly
referred to as the search number. The first complexity result
is due to Meggido et al. [13] who proved that finding the
search number for the model from [10] is NP-hard. Another
important question is whether recontamination matters for

optimal solutions. Recontamination occurs when a previously
cleared area becomes again contaminated during the search.
It is then interesting to know whether one can always find a
strategy that does not generate recontamination and only uses
as many searchers as given by the search number of the graph.
Graph-searching models that have this property are called
monotone and Parson’s model was shown to be monotone in
[14]. It is worth noting that connected edge-searching is not
monotone as shown in [15], and connectedness comes at an
increased cost, but this increase is conjectured to be no more
than two searchers [12] for any graph. For trees, however,
requiring connectedness will not lead to more costly strategies.
There is also a rich vein of results connecting global graph
parameters to search numbers of different search variants.
Parameters such as cutwidth and treewidth also play a role
in the monotonicity proofs, culminating into a generalization
of such proofs given in [16]. Graph-based models have found
various applications in robotic systems, such as in [17]–
[20] which used and modified existing edge-searching and
node-searching models. A new graph-based model for robotic
applications, called Graph-Clear, was developed in [2], [3],
[21], [22] in which vertices are cleared and edges are blocked
to prevent recontamination. Therein edges and vertices have
weights representing the number of robots needed to clear
a vertex or prevent recontamination through an edge. The
problem of finding search strategies was shown to NP-hard
on graphs, but for trees with n vertices an O(n2) monotone
algorithm was shown to exist. Interestingly, the weighted
version of edge-searching, introduced in [23], turns out to be
NP-hard even on trees as shown in [24] and not polynomial
time as formerly reported in [23].

In robotics, pursuit-evasion has primarily been studied in the
form of visibility-based pursuit-evasion and with an emphasis
on single searchers with infinite line of sight. In this setting
an intruder is detected when it falls within the unlimited range
sensor of a pursuer in a 2D environment. The field was pio-
neered by Suzuki and Yamashita [25] who considered polyg-
onal environments only, and a sensor model (flashlight) with
unlimited range but incapable of detecting intruders behind
obstacles. They introduced the concept of k-searcher, where k
is the number of sensing beams emitted by the searcher, with
the special case of an ∞-searcher being a searcher with an
omnidirectional sensor with infinite range. As for graphs, a
2D environment also has a search number, i.e., the minimum
number of searchers needed to detect all intruders. Also similar
to graphs, the possibility of an intruder being located in the
environment is often represented by contamination that is
then cleared by searchers. The visibility-based pursuit-evasion
problem for a single ∞-searcher was solved by LaValle et
al. [26]. The problem of finding the minimal number of ∞-
searchers for any polygon is proven to be NP-hard in [27]. The
authors also show that recontamination is sometimes useful in
order to find the optimal solution, i.e., visibility-based pursuit-
evasion with a single searcher is not monotone. An important
result regarding the required capability to search environments
was presented in [28] and it states that a searcher that can
only detect gaps, i.e., discontinuities in the environment, and
move towards these gaps is sufficiently capable to clear any

3

environment that a more powerful robot can. Extending com-
plete and optimal visibility-based pursuit-evasion algorithms to
multiple searchers has proven to be challenging. The approach
presented in [29] uses a cylindrical algebraic decomposition
to generate strategies for multiple pursuers, but the best upper
bound for the computational complexity of this approach is
doubly exponential in the number of agents. Related results
were presented in the most recent extension [30].

Other line-based approaches have been investigated as well.
Obermeyer et al. consider the problem of detecting intruders
with a sweeping ray [31]. However, the problem they study
is restricted since the source of the ray is stationary, whereas
in this paper we consider lines where both extremities can
be moved. The contribution most related to the problem we
study in this paper was presented by Efrat et al. [32]. Therein
the authors study a method where multiple robots, each with
an unlimited range sensor, are arranged in a single movable
polygonal chain operating in a simply-connected polygon with
n vertices. The algorithm to compute motion strategies in
[32] runs in O(n3) and improved algorithms developed in
[33] run in O(n log n) In this paper, on the contrary, we
consider the case where robots have limited sensing ranges and
multiple polygonal lines are used to sweep the environment.
We further allow the number of lines to vary as the search
mission unfolds. An interesting approach that also assumes
limited sensing range is presented in [34] where the authors
present a system where multiple robots trap faster intruders,
once they detect them, by forming a surrounding chain. In
these kinds of capture or direct pursuit problems, similar to
differential games [35] like the lion and man problem, time
obviously play a crucial role. In this paper we do not consider
any notion of time, and as pointed out in [6] this is one of
the important open research questions with regard to robotic
search in complex environments and large teams. A close
approach to ours in terms of considering limited range sensor
is found in [36]. Therein the authors present a distributed
algorithm to clear an environment with a team of robots
with limited range and limited field of view sensors. The key
contribution is the allocation of robots to the frontier between
cleared and contaminated areas that considers the geometry of
locally visible areas in order to find good locations for newly
arriving robots at a frontier. One key distinction is that the
robots do not discover the overall topology of the environment
and cannot plan strategies that minimize the number of robots
needed to clear the environment. The bound provided for the
number of robots that may be required for the centralized
version of the algorithm in [36] is simply given by the number
of viewpoints that it requires to be occupied.

III. LINE-CLEAR: DEFINITIONS AND MATHEMATICAL
PRELIMINARIES

In this section we define the search model. The reader is
assumed to be familiar with basic computational geometry
concepts and is referred to [1] for a comprehensive introduc-
tion to this topic. Our assumptions are similar to those used
in other search and pursuit-evasion problems with guarantees,
i.e., we search for an unknown number of targets that are

omniscient, arbitrarily fast, and actively try to avoid being
detected. Targets are omniscient in the sense that they have
full knowledge of the environment and of the locations of all
searchers. The presence of these targets is modeled with the
concept of contamination. In the following we will first define
the environment and then an abstract model for the sensing
capabilities of the robot team, based on so-called sweep lines.
We then define contamination, how it is cleared by sweep
lines, and formally introduce the Line-Clear problem. Figures
2 and 3 illustrate some of the symbols and concepts we define
in the following. The reader is invited to refer to this figure
as the various definitions are provided.

l1

l2

E @(E)

int(E)

x1

x2

x3

x4

x5
x6

Fig. 2. Illustrations of the environment and sweep lines. The meaning of the
various symbols used in the figure is given in the remainder of this section.

The environment is a bounded, closed, connected set E ⊂
R2 with a boundary ∂E consisting of k ≥ 1 simple polygons1,
one of which is the exterior polygon that contains all other
k − 1 polygons. In Fig. 2, E is bounded by three polygons,
i.e., it has two holes. Let ∂(E) be its boundary and int(E) be
its interior. In the following, given xi, xj ∈ R2, let [xi, xj]
be the closed segment between xi and xj and let (xi, xj) be
the open segment between the same points. The ability of a
team of robots to detect targets with their sensors is modeled
by sweep lines, defined as follows:

Definition 1 (Sweep Line). A sweep line l is an ordered list
of n > 1 points in R2 written l = [x1, . . . , xn] subject to the
following constraints:

1) x1, xn ∈ ∂E;
2) all open segments (xk, xk+1), 1 ≤ k ≤ n − 1 do not

intersect with each other, and (xk, xk+1) ⊂ E .2

The set of all sweep lines with n points is indicated as S(n).

We now formalize the movement and coordination of
multiple sweep lines by defining moving sweep lines and a
sweep schedule. Figure 3 illustrates the idea of moving sweep
lines that are coordinated in a sweep schedule to clear an
environment. Subfigure 1 shows an environment partitioned
into clear (gray) and contaminated regions (white). As a
sweep line moves the cleared region grows (subfigure 2). The
sweep schedule then replaces a single moving line with two
sweep lines (subfigure 3) that can move separately. Our final
objective is to determine a sweep schedule that will remove
all contamination for E .

1We recall that a simple polygon is a region bounded by a single polygonal
chain that does not intersects itself.

2Note that this definition allows segments to share endpoints.

4

Definition 2 (Moving Sweep Line). A moving sweep line is
a function l : R+ → S(n) with l(t) = [x1(t), . . . , xn(t)] such
that xi(t) is continuous in t ∀i ∈ {1, . . . , n}.
Definition 3 (Sweep Schedule). A sweep schedule is a function
τ : [0, Tf]→ P(S), where P(S) is the powerset of all sweep
lines with any number of segments.

Note that the specific value of Tf (final time) in the
above definition is immaterial to the remaining discussion. The
definition of sweep schedules above is rather unconstrained as
it can map into any set of sweep lines. For example, a set of
k moving sweep lines l1(t), l2(t), . . . , lk(t) defines the sweep
schedule τ(t) = l1(t) ∪ . . . ∪ lk(t). But we can also add and
remove moving sweep lines to a sweep schedule. Constraints
on sweep schedules will arise later through the requirement
that they clear an environment, e.g., continuity is necessary
to avoid discrete jumps that prevent clearing. For this we will
have to define contamination and how it is cleared by a sweep
schedule. Intuitively a sweep schedule should be thought of
as maintaining and expanding a cleared area with sweep lines,
controlling their addition, motion, splitting, and removal (as
shown in Fig. 3).

e3

e13

e3

e8

e9
e10

e13

e14

e3

e8

e9
e10

e13

e14

R(t1)
R(t2)

e1

e16

R(t3)
R(t4)

1) 2)

C(t1)

3) 4)

Fig. 3. Four snapshots of a sweep schedule at times t1, t2, t3, and t4 showing
how a sweep line (dashed line) moves forward, extends the cleared area R(t),
is replaced by a sweep line with a midpoint at time t3 which then splits on
e9 and is replaced by two sweep lines between e9 and e3 and e9 and e13
which can now move independently. The boundary is drawn with thick lines.

In order to relate a sweep schedule to contamination we
define coverage sets for sweep lines which follow from the
interpretation of sweep lines as chains of line segments.

Definition 4 (Coverage sets). Let l = [x1, . . . , xn] be a sweep
line. Its coverage set P̄ (l) ⊂ E is the part of E covered by its
n − 1 segments. If S = {l1, . . . , lk} is a finite set of sweep
lines, then its coverage set is P̄ (S) =

⋃k
i=1 P̄ (li).

Referring to Figure 2, P̄ (l1) is given by its five segments,

whereas P̄ ({l1, l2}) is given by all the segments shown in
the figure. Moreover, as τ(t) is a set of sweep lines at
time t (definition 3), it is possible to consider P̄ (τ(t)), i.e.,
the coverage set of the sweep lines defined by the sweeping
schedule at time t.)

We can now define contamination and disallow it from
crossing the coverage set of a sweep schedule.

Definition 5 (Clear and contaminated points). For each time t
a point in E is either clear or contaminated. R(t) is the set of
all clear points at time t and C(t) is the set of contaminated
points.

A point p ∈ E is contaminated if a target may be located
at p. Conversely, p ∈ E is cleared if it is known that no target
is located at p. Consistent with the hypothesis that targets
are omniscient and travel at unbounded speeds, as soon as
a chance of recontamination arises, targets immediately take
action and previously cleared points can become recontam-
inated. In other words the boundary of the set of cleared
points must be continually guarded with sweep lines to prevent
recontamination. The following definitions formalize this idea.

Definition 6 (Contamination path). Let x be a point in E
and τ(t) the set of sweep lines at time t for schedule τ . A
contamination path for x at time t is a path3 between x and
a point y ∈ C(t) that does not intersect P̄ (τ(t)).

A contamination path for a point models the existence of a
path between the point and the contaminated region that does
not go through the coverage set of a sweep schedule, i.e., the
area guarded robots. As common in the literature, if there is
a contamination path, then the point becomes contaminated
itself. Analogously, a point that is in the coverage set is
considered clear until it is recontaminated. Therefore, as
illustrated in figure 3, the boundary between R(t) and C(t)
is given by P̄ (S) where S is the set of sweep lines at time t.
The next definition formalizes this.

Definition 7 (Clearing and recontamination). A point x is
clear at time t if x ∈ P̄ (τ(t)). A point x is contaminated
at time t if there is a contamination path at time t. A point x
is recontaminated if it is clear at time t and contaminated at
time t′ > t.

The purpose of sweep lines is to represent the ability of a
team of robots to guard a region of space with one or more
robots, such that no intruder can cross without being detected.
The cost of a sweep line then represents the number of robots
that a particular sweep line requires.

Definition 8 (Cost of Sweep Lines). Let l be a sweep line.
Its cost c(l) is a non-decreasing integer function of its length,
where the length of a sweep line is the sum of the lengths of
its segments. That is to say that if l1 is a sweep line longer
than l2, then c(l1) ≥ c(l2). For a finite set of sweeplines S, its
cost is the sum of the costs of its individual sweeplines. For a
sweep schedule τ define the cost c(τ) = maxt∈[0,T]{c(τ(t))}.

3A path between two points x1 and x2 is defined as a continuous function
f : [0, 1] → E with f(0) = x1 and f(1) = x2.

5

The cost c(τ) represents the minimum number of robots
needed to ensure that every sweep line in the sweep schedule
can be covered with sensors. The precise number depends
on the sensors used to cover the sweep line and this generic
formulation allows to tackle the problem without committing
to a specific sensor type. Our only assumption is that the cost
is a non-decreasing function of the sweep line length. This
formalizes the intuition that as a sweep line gets longer one
needs at best the same, but potentially more, robots to cover
it.

The Line-Clear problem asks for sweep schedules that clear
an initially contaminated E at the lowest possible cost. We
also introduce two additional properties of sweep schedules,
namely connectedness and monotonicity, and allow variants of
the Line-Clear problem that are restricted to sweep schedules
with these properties.

Definition 9 (Connected and monotone sweep schedules). Let
τ be a sweep schedule that clears E . If R(t) is a connected set
∀t ∈ [0, Tf], then τ is connected. If t ≤ t′ ⇒ R(t) ⊆ R(t′),
then τ is monotone.

Definition 10 (The Line-Clear problem). The Line-Clear
problem is to find an optimal sweep schedule

τopt := arg min
τ
c(τ).

such that R(Tf) = E . The connected Line-Clear problem
additionally requires τopt to be connected, and its optimal
solution is indicated as τcon,opt. We define the Line-Clear
number of E lc(E) := c(τopt) and the connected Line-Clear
number as clc(E) := c(τcon,opt).

IV. COMPUTATIONAL COMPLEXITY

We show that Line-Clear is NP-hard by establishing a cor-
respondence between Line-Clear and edge-searching. Edge-
searching is one of the more researched pursuit-evasion prob-
lems on graphs [10] and is defined as follows. Given a graph
G, an intruder moves along its edges while a team of searchers
tries to capture it. Searchers can perform three operations: 1)
position themselves on a vertex, 2) move along an edge, and
3) move away from a vertex. The intruder is captured when
it visits a vertex where a searcher is positioned, or when it
is located on an edge along which a searcher is moving. The
intruder is assumed to be omniscient whereas searchers just
know the structure of the graph G. The goal of the searchers
is to determine a strategy S, i.e., a sequence of the three
operations described above, that guarantees capture of the
intruder. This problem can also be modeled with contamination
that is cleared by a strategy, with contamination residing in the
edges of the graph. The search number of a graph, s(G), is the
minimum number of searchers required to capture an intruder
in G. For a given integer K and graph G, determining whether
s(G) ≤ K was shown to be NP-complete [13], [14]. It is also
known that the problem is NP-complete even if one restricts
G to be a planar graph with vertex degree at most three [37].
Let G3 be such a planar graph with maximum vertex degree at
most three. For this graph we will now construct an instance

of the Line-Clear problem and relate the Line-Clear number
lc(E) to s(G3).

For a given G3 we construct the associated Line-Clear
environment E3 by combining three different elementary com-
ponents called intersection, corridor, and dead-end. Every
vertex of degree 3 is associated to an intersection in E3, every
vertex of degree 2 to a corridor, and every vertex of degree 1
to a dead-end. These three elementary components are defined
as shown in Fig. 4. These components rely on two parameters,
d and l, that are constrained as follows. For a sweep line l1 of
length d going through a corridor we require that c(l1) = 1.
This ensures that corridors are narrow enough to be cleared
at cost 1. For a sweep line l2 of length l, we require that
c(l2) > s(G3). This ensures sufficient separation between
the vertices and their areas A(v) shown in Figure 4, since
any sweep line intersecting A(v1) and A(v2) for two vertices
v1 and v2 would have cost larger than s(G3). Now, given a
planar embedding of G3 we can replace every vertex with
its associated component and where necessary extend their
length beyond l. For every edge between two vertices in G3

we now have a corridor in E3 with length at least 2 · l. Given
an edge e = (v, v′) we write A(e) ⊂ E3 for the area of the
corridor and A(v) ⊂ E3 for the area of the vertex v between
corridors, exactly as shown in Fig. 4. It is straightforward to
verify that from a planar embedding of G3 we can use the
above components to construct E3 without intersections. In
such case we say that E3 is the environment associated to G3.

ld l l

d
A(v)

A(e1) A(e2)

A(e3) A(v)

A(e1) A(e2)

A(v)

A(e1)

corridor dead-endintersection

d

l

Fig. 4. The three components for the construction of E3 from G3. Areas
associated to edges are marked in grey and areas associated to vertices are
marked in white. For simplicity we show straight corridors but turns are
allowed given that their width does not exceed d.

The following theorem formalizes the equivalence between
a sweeping schedule in E3 and a strategy in G3. Its proof,
clarifying the remaining details in the construction outlined
above, is given in the appendix.

Theorem 1. Let G3 be a planar graph whose vertex degree
is at most 3 and let E3 be its associated environment. Then
s(G3) = lc(E3).

The above theorem immediately leads to the following
corollary considering how an instance of edge-searching on
G3 can be reduced to an instance of Line-Clear on E3.

Corollary 1. Recalling that edge-searching is NP-complete
on graphs of type G3 the NP-hardness of Line-Clear follows.

Note that the converse, a reduction of Line-Clear to in-
stances of edge-searching, is far more challenging. Attempts
at using edge-searching algorithms to develop algorithms for
Line-Clear, although not described here, have proven to be thus
far unproductive. Why this is the case will become clearer

6

as we proceed to solve the Line-Clear problem in a more
restricted setting in the next sections.

V. REDUCTION TO A COMBINATORIAL PROBLEM

Having established the NP-hardness of the Line-Clear prob-
lem for the general case of multiply-connected environments,
we switch to considering the computation of monotone sweep
schedules for the connected Line-Clear problem for the sim-
pler case of simply-connected environments, i.e., environments
without holes and one exterior polygon describing the bound-
ary. The key insight to solve this special case is in observing
that one only needs to keep track of the sequence in which
polygon edges on the boundary of the environment are cleared.
This allows us to ignore the continuous nature of the original
problem and focus on a simpler set of critical moments that
determine the cost of sweep schedules. To demonstrate this we
will first have to introduce the concept of choice sets to keep
track of the remaining contaminated edges on the boundary of
the environment. We then show that any sweep schedule has
to satisfy lower bounds that are expressed in terms of choice
sets. This shows that choice sets can capture the cost relevant
structure of the problem. Consequently, the remaining sections
will be focused around choice sets.

Let Es be a simply-connected environment for the connected
Line-Clear problem and let {v1, . . . , vn} be the set of vertices
defining its outer polygonal boundary, with edges written ei =
[vi, vi+1] (with en = [vn, v1]). We refer to an index i as an
obstacle index. For notational convenience, indices for vertices
and edges are modulo n, i.e., we identify n+ 1 with 1, i+ n
with i, and so on. We call an edge ei cleared if any point on
the segment [vi, vi+1] is cleared.

Now, consider the progression of a sweep schedule that
expands a connected R(t) without recontamination, as shown
in Figure 5 for some time t. Note that each connected
contaminated component (two such components are shown in
Figure 5) has on its boundary a sequence of contaminated
edges with consecutive indices. A sweep schedule that clears
Es will eventually have to choose another contaminated edge to
be cleared when expanding R(t). In Figure 5 this choice could
be an edge from either connected component, i.e., an edge ei
with index i ∈ {4, 5, 6, 7} or i ∈ {11, 12}. The following
definition of choice sets generalizes this observation to any
sweep schedule at any time t.

Definition 11 (Choice Set). For any k = 1, . . . , n and i =
1, . . . , n let

T ik := {i, i+ 1, . . . , i+ k − 1} ⊆ {1, . . . , n}

and call it a choice set. For k = 0 let T i0 = T0 = ∅ and call
them empty choice set.

In essence T ik is a sequence of k integers starting at i and
wrapping around n. For example, for n = 6, i = 5, k = 4,
we obtain T ik = {5, 6, 1, 2}. The important part is that we can
now associate any connected contaminated component of Es
at some time t with a choice set T ik. For convenience, we write
C(T ik) for the connected contaminated component represented
by T ik, as shown in Figure 5. Note that T ik can represent

connected contaminated components of slightly varying shapes
as long as it contains all the contaminated edges, a sweep line
with endpoints on ei−1 and ei+k and potentially a subset of
the cleared edges ei−1 and ei+k.

Let T (t) be all the choice sets associated with the connected
components of C(t). Without loss of generality let exactly one
edge be cleared at each time t1 < t2 < . . . < tn. Conse-
quently, the different sets of choice sets can be enumerated
as T (t0) = {T 1

n}, T (t1), . . . , T (tn) = {T0}, starting at t0
with all edges contaminated and ending at tn with all edges
cleared. Note that this is uniquely determined by the sequence
in which edges are cleared which we shall write as o1, . . . , on,
with each oj ∈ {1, . . . , n} being the index for edge eoj .

e3

e8

e9
e10

e13

e14

R(t)

C(T 4
4)

C(T 11
2)

T (t) = {T 4
4 , T 11

2 }

e1

e2

e4

e5

e6

e7

e11

e12

e15

e16
e17

e18

Fig. 5. An illustration of how choice sets capture the progress made by the
sweep schedule with each choice set representing a connected contaminated
area. The grey part is cleared and the white part inside the polygon is
contaminated.

Our goal is now to show that all sweep schedules that make
the same choices for o1, . . . , on (and therefore have the same
choices sets) also have the same lower bound for their cost. We
do this by expressing a lower bound for the sweep schedule
in terms of T (t1), . . . , T (tn−1).

Let d(·, ·) be the shortest path in Es between two points or
edges4. Since Es is bounded by a polygon, there also exists
a sweep line between these two points or edges with length
d(·, ·). For a choice set T ik we define (recall definition 8)

b(T ik) := c(d(ei−1, ei+k)).

b(T ik) is called the blocking cost for T ik, since it reflects
the minimal costs for blocking recontamination from entering
R(t) when T ik ∈ T (t).

Now, as the sweep schedule progresses it will expand R(t)
until it clears a first edge from T ik. Figure 6 illustrates this
process. Let eo be this first edge with o ∈ T ik. Clearing eo
requires moving the sweep line that bounds C(T ik) onwards
toward eo at some additional cost. A lower bound for this
cost is obtained by considering the lowest cost for two sweep

4This path can be computed efficiently combining ideas from [38, Chap-
ter 6.2.4] with [39] (see Section VII.)

7

eoj

ei�1

ei+k

C(T i
k)

R
eoj+1

1) 2)

3) 4)

Fig. 6. An illustration of a sweep line from part 1) splitting in part 2) and
moving to the lowest blocking cost in part 3). Part 4) shows another split that
occurs at no additional cost for which the left side has a zero length sweep
line, clearing eoj+1. Cleared edges are grey.

lines, one between ei−1 and eo and one between ei+k and eo,
which have the same endpoint on eo. We call this lower bound
the cost for choosing o out of T ik and define it as:

c(o|T ik) := min
p∈eo
{c(d(p, ei−1)) + c(d(p, ei+k))} .

It is now straightforward to show that at any point in time
t in between tj < t < tj+1 we have

c(τ(t)) ≥
∑

T∈T (t)

b(T)

and that at time tj when clearing edge eoj with oj ∈ T ik ∈
T (tj−1) we have

c(τ(tj)) ≥ c(oj |T ik) +
∑

T i
k∈T (tj−1)\T i

k

b(T).

In addition to providing a lower bound the above also gives
us a construction for a minimal cost sweep schedule with fixed
choices for the sequence o1, . . . , on. For this it suffices to
observe that there exist blocking sweep lines with cost b(T) for
every choice set T , that there exist splitting sweep lines with
cost c(o|T ik), and that one can move between these (for this
one requires simply-connectedness). In this sense the lower
bounds are tight, i.e., achievable with a sweep schedule.

The above considerations reduce the problem of comput-
ing a sweep schedule to the problem of determining which
sequence o1, . . . , on leads to a solution for the Line-Clear
problem, since for any sequence we can construct its minimal
cost sweep schedule. Clearly, a brute force approach testing all
n! possible sequences is not practical and in the next section
we will demonstrate how to use choice sets for a more efficient
solution.

VI. FINDING OPTIMAL SWEEP SCHEDULES FOR
SIMPLY-CONNECTED ENVIRONMENTS

In this section we show how to compute sequences
o1, . . . , on that lead to optimal cost sweep schedules and hence
solve the connected and monotone Line-Clear problem. We
first develop a representation of the search space for these

sequences, and then turn to efficiently determining their cost.
The basic idea is to use the choice sets from Section V to
build a sequence o1, o2, . . . , on recursively.

The initial choice set for an environment with n vertices
is {1, . . . , n}. From this set we choose some o1 as the
first obstacle index. The next choice, for o2, will lead to a
separation of the remaining choices {1, . . . , n} \ {o1, o2} into
two sets, the right side and left side. On the left side are all
indices o such that o1 < o < o2 whereas on the right side
are all indices o such that o2 < o < o1.5 These sides are
represented by choice sets and their connected contaminated
components. There will be one choice set in T (t2) if o1
and o2 are consecutive and two if they are not. In one of
these connected components we can make a further choice of
obstacle index for o3 and so on. Figure 7 illustrates this idea.
On the left subfigure, a line is setup between obstacles e3 and
e8. Therefore two contaminated regions are placed to the left
and the right of the initial line. The edges on the boundary
of the left area are given by the choice set T 4

4 , whereas the
edges of the right side are given by T 9

12. On the right subfigure,
the initial lines are setup along edges e3 and e4 and there is
therefore just one contaminated area whose edges are given
by the choice set T 5

16.

C(T 4
4) R(t)

left side

right side

R(t)

right side

2)

C(T 5
16)C(T 9

12)

e5

e6

e7

e10
e11

e12
e13

e14

e15

e16e17

e2

e1

e18

e4

e3

e8

e9

e5

e6

e7

e10
e11

e12
e13

e14

e15

e16e17

e2

e1

e18

e4

e3

e8

e9

1)

Fig. 7. An illustration of the first two choices, o1 and o2. On the left we have
o1 = 3 and o2 = 8 resulting in a cleared line on the shortest path between e3
and e8 and T (t2) = {T 4

4 , T
9
12}. On the right a consecutive choice of o1 = 3

and o2 = 4 leads to an empty choice set on the left side and T (t2) = {T 5
16}

on the right side.

The key to an efficient solution is to exploit the recursive
structure of choice sets that emerges because of these splits
into left and right sides. The next subsections characterize this
structure and provide the associated algorithms to efficiently
solve subproblems that arise.

A. Obstacle Sequences in Choice Sets

For a given choice set T ik and its associated contaminated
area C(T ik) we are now going to construct a “local” sequence
of obstacle indices only from T ik which corresponds to a
“local” sweep schedule that clears C(T ik). Let O(T ik) be the
set of all sequences of obstacle indices from T ik. Among these
k! sequences we would like to determine the best one, i.e., the
one leading to the lowest cost sweep schedule. To this end,
we define the cost of an obstacle index sequence based on the
blocking and clearing costs of choice sets. Let O ∈ O(T ik)

5Recall that we consider a circular ordering.

8

be a shorthand for one sequence, written O = o1, o2, . . . , ok.
As mentioned earlier the choice for o1 splits the contaminated
region C(T ik) into (at most) two regions, called the right side
and the left side. Both of these are associated with choice
sets that are subsets of T ik. These must be cleared as well
by defining their own sweep schedules with associated costs.
This continues until all indices are chosen. The cost for the
s-th choice, i.e., for os, is determined as follows. Write T s

for the choice set out of which we choose os. Moreover, let
T r,s and T l,s be the left and right choice sets into which T s

will split when clearing eos . The cost at step s of O, written
cs(O), is then defined as follows.

Definition 12 (Sequence Costs). Let O ∈ O(T ik) be a
sequence of obstacle indices. For s = 0, . . . , k we recursively
define the sequence costs as follows:

c0(O) := 0 and b0(O) := b(T ik)

cs(O) := bs−1(O)− b(T s) + c(os|T s) s ≥ 1

bs(O) := bs−1(O)− b(T s) + b(T l,s) + b(T r,s) s ≥ 1

The rationale behind the definition is as follows. The term
b0(O) is the initial blocking cost to prevent recontamination
from C(T ik). The term bs(O) describes the cost to prevent
recontamination after having executed step s and cleared eos .
It is computed from the previous blocking cost at s − 1 by
removing b(T s), since T s is split, and adding the costs for
the resulting left b(T l,s) and right side b(T r,s). The total cost
to execute s is then the cost to prevent recontamination from
the previous step s−1 except for the b(T s) robots blocking T s

which can be reused for clearing eos at the cost of c(os|T s)
robots. The sequence is seeded at c0(O) = 0 for convenience.
The steps above can also be seen in the context of Figure 6
with subfigure 1 showing b0(O), subfigure 2 showing c1(O),
and subfigure 3 showing the updated b1(O). Also note that
subfigure 4 shows a particular case in which there is no notice-
able movement or change in cost when clearing eoj+1, since
the left side is empty and b(T s) = b(T r,s) = c(oj + 1|T s),
effectively clearing eoj+1 at no additional cost.

We next introduce the notion of critical steps that will aid
us in the construction of a low cost sequence O.

Definition 13 (Critical Step). For a given sequence O of length
k and for all s ≤ k, define cmaxs (O) := maxj≤s{cj(O)}. A
critical step of O is a step s that satisfies:

cmaxs′ (O) ≤ cmaxs (O)⇒ bs′(O) ≥ bs(O) (1)

for all steps s′ ∈ {1, . . . , k}.
In other words, a critical step is a step that has the lowest

blocking cost bs amongst all other steps that have the same or
lower total cost to reach, given by cmaxs . Conversely, a critical
step s has the lowest total cost cmaxs with which we can reach
a blocking cost of bs and is hence the cheapest way to reach
this blocking cost. Note that to reach step s all previous steps
need to be executed, hence the definition of cmax. Let us write
S(O) := {s1, . . . , sk′} for all critical steps of O in order. Note
that the first critical step is always s1 = 0 with b0(O) and
c0 = 0 and the last critical step is always sk′ = |T ik| = k

with bk(O) = 0 with the highest total cost to reach. For each
critical step sj , j = 1, . . . , k′ we now define:

ρsj (O) = cmaxsj (O)− bsj−1(O).

For all non-critical steps s ∈ (sj−1, sj) ⊂ N we define
ρs(O) := ρsj (O). The following lemma establishes some facts
about sequences of critical steps that will be useful later on.

Lemma 1. The following statements hold:

1) bsj (O) is a decreasing sequence with j = 1, . . . , k′;
2) ρs(O) is a non-decreasing sequence with s = 1, . . . , k;
3) cmaxsj (O) = maxs∈(sj−1,sj] cs(O).

Proof: See appendix.
We now turn to the problem of choosing the best index out

of T ik. Write o ∈ T ik for the chosen obstacle index for splitting
T ik into T l and T r. Suppose that we are already given fixed
sequences to clear C(T l), written as Ol ∈ O(T l), and C(T r),
written as Or ∈ O(T r). Algorithm 1 shows how to construct
a sequence o1, . . . , ok = Oa ∈ O(T ik) given fixed choices
for o1 = o, Ol, and Or. Therein the obstacle indices on the
left and right sides are simply ordered with their respective ρs
increasing and then added to Oa in that order (line 4-8).

Algorithm 1 Min Obstacle Sequence(i, k, o,Ol, Or)
1: o1 ← o
2: sl ← 1, sr ← 1, s← 2.
3: while s ≤ k do
4: if ρsl(Ol) < ρsr (Or) then
5: os ← Orsl , s

l ← sl + 1
6: else
7: os ← Orsr , sr ← sr + 1
8: end if
9: s← s+ 1

10: end while
11: return {o1, . . . , ok}

The following theorem proves that Oa has not only the
lowest possible cost of all sequences starting at o and having
Ol and Or as subsequences, but also that no other sequence
can have an intermediate step that is better (i.e., a step with a
lower block cost that is reached at lower total cost). In other
words, Oa is the best possible combination of Ol and Or.

Theorem 2. Let O ∈ O(T ik) with o1 = o and let Ol ∈ O(T l)
and Or ∈ O(T r) be the obstacle sequences from the left and
right choice set that are subsequences of O. Now, let Oa ∈
O(T ik) be the obstacle sequence constructed by Alg. 1 with
input k, i, o, Ol, Or. Then for all critical steps s ∈ S(O), s′ ∈
S(Oa):

cmaxs (O) < cmaxs′ (Oa) =⇒ bs(O) > bs′(O
a).

Proof: See Appendix.

The next lemma is concerned with sequences O ∈ O(T ik)
that will never be useful subsequences for a larger sequence.
We call these inferior sequences, defined as follows:

9

Definition 14 (Inferior Obstacle Sequence). A sequence O ∈
O(T ik) is called inferior if ∃Õ ∈ O(T ik) s.t.:

bs(O) ≤ bs′(Õ) =⇒ ρs(O) ≥ ρs′(Õ)

∧ cmaxs (O) ≥ cmaxs′ (Õ)

It follows directly from the definition and substitutions
in the equations in the proof of Theorem 2 that inferior
sequences, when considered as a left or right subsequence (Ol

or Or), cannot yield a non-inferior larger sequence Oa. As a
consequence, in a recursive construction, we do not have to
include inferior sequences when computing optimal sequences.
Algorithm 2 shows how to test whether an obstacle sequence is
inferior to another. It simply scans through the sequences and
tests if O is inferior by applying Definition 14, i.e., it returns
false if it finds a step that has a better or equal blocking cost
reachable at lower total cost (returning false on line 6) or a
lower blocking cost reached at the same total cost (returning
false on line 13). If it cannot find such a step, then O is inferior.

Algorithm 2 is inferior(O, Õ)

1: bmin ← b1(O), b̃min ← b1(Õ)
2: cmax ← c1(O), c̃max ← c1(Õ)
3: while j ≤ k AND s ≤ k do
4: if cmax < c̃max then
5: if bmin ≤ b̃min then
6: return false
7: end if
8: cmax ← max{cmax, cs(Õ)}
9: bmin ← min{bmin, bs(O)}

10: s← s+ 1
11: else
12: if cmax = c̃max AND bmin < b̃min then
13: return false
14: end if
15: c̃max ← max{c̃max, cj(Õ)}
16: b̃min ← min{b̃min, bj(Õ)}
17: j ← j + 1
18: end if
19: end while
20: return true

Algorithm 3 shows how to exploit this for finding all obsta-
cle sequences for a choice set T ik and a choice o ∈ T ik adding
the resulting obstacle sequences to a set Õ(T ik) ⊂ O(T ik),
unless it is inferior. This requires that previously all relevant
sequences on the left and right sides (Õ(T l) and Õ(T r))
have already been constructed. Calling Algorithm 3 for every
choice o ∈ T ik would build up the complete Õ(T ik), an
auxiliary structure that collects all relevant obstacle sequences
for T ik. The set Õ(T ik) contains at most one sequence for every
combination of sequences from the left and right sides due
to Theorem 2 (instead of all possible

(
k−1
|Or|
)

combinations)
and only non-inferior sequences, which makes it significantly
smaller than the set of all sequences O(T ik).

Algorithm 3 can be applied to all choice sets with the outer
loop going from k = 1 to k = n, an inner loop going from
i = 1 to i = n, and an innermost loop with all o ∈ T ik as shown

Algorithm 3 Combine Obstacle Sequences(i, k, o)
1: T l ← T i+1

o−i , T r ← T o+1
i+k−o−1

2: o1 ← o
3: for all (Ol, Or) ∈ Õ(T l)× Õ(T r) do
4: O ←Min Obstacle Sequence(i, k, o,Ol, Or)
5: inferior ← false
6: for all Õ ∈ Õ(T ik) do
7: if is inferior(O, Õ) then
8: inferior → true, break
9: else if is inferior(Õ, O) then

10: Õ(T ik)← Õ(T ik) \ {Õ}
11: end if
12: end for
13: if ¬inferior then
14: Õ(T ik)← Õ(T ik) ∪ {O}
15: end if
16: end for
17: return

in Algorithm 4. This ensures that all necessary sequences on
every possible left and right side are built before they are
required. Finally, the best obstacle sequence is selected among
all choice sets with k = n. Theorem 2 and the fact that inferior
sequences cannot construct optimal sequences guarantee that
Algorithm 4 will find the optimal obstacle sequence. The
corresponding sweep schedule is hence an optimal sweep
schedule and a solution for the connected Line-Clear problem
in simply-connected environments.

Algorithm 4 Connected Line Clear Number(Es)
1: Define b(·) and c(·|·) using Es
2: for all k = 1, . . . , n do
3: for all i = 1, . . . , n do
4: for all o ∈ T ik do
5: Combine Obstacle Sequences(i, k, o)
6: end for
7: end for
8: end for
9: min←∞

10: for all i = 1, . . . , n do
11: Omin ← argminO∈Õ(T i

n)
{cmaxn (O)}

12: if cmaxn (Omin) < min then
13: min← cmaxn (Omin)
14: end if
15: end for
16: return min

B. Complexity
The complexity of Algorithm 4 is difficult to determine.

The non-trivial parts are the additions to the sets Õ and
the cartesian product of all sequences on the left and right
(Algorithm 3 line 3). The result from Theorem 2 allows to
ignore all combinations of left and right subsequence but one.
Yet this can still lead to exponential growth of Õ(T ik) with
increasing k due to the cartesian product in line 3 of Algorithm
3.

10

The key questions remaining is how much further the
consideration of only non-inferior sequences reduces the com-
plexity or, in other words, how many sequences in O(T ik)
can be non-inferior and hence become part of Õ(T ik). From
Definition 14 it follows that if for all Õ there is some s, s′ so
that:

bs(O) ≤ bs′(Õ) ∧ (ρs(O) ≥ ρs′(Õ) ∨ cmaxs (O) ≥ cmaxs′ (Õ))

then O is non-inferior. Hence O has to have at least one
step that has a low blocking cost that cannot be achieved
by another obstacle sequence either earlier in the ρ-ordering
or with lower cost cmax. If all the term above are equal we
could consider one of the two sequence as a duplicate and
remove it, but this does not make a significant difference.
The problem is that the criterion above may still allow us
to generate an exponential number of sequences by setting
appropriate values for ρ, cmax, b in which each sequence has
some advantage over another. Given these values the next
open question is whether one can construct an environment
Es. If it is, then our algorithm has exponential complexity
in n and we would conjecture that connected Line-Clear
in simply-connected environments is NP-hard. If not, then
our algorithm has polynomial time complexity. Discussing
how one may generate an exponential number of appropriate
values for ρ, cmax, b that is required to generate an exponential
number of non-inferior sequences and the construction of a
corresponding environment is beyond the scope of this paper
and an interesting question for further work. In practice,
however, one is unlikely to encounter such an environment. A
single narrow section with a low blocking cost b will already
wipe out many alternative obstacle sequences. In practice, we
hence expect polynomial runtime and we provide some support
for this conjecture in the next section.

In the next section we also discuss further practical im-
provements, an implementation for finding shortest block and
split lines, and experiments on random environments that shed
some light on the number of non-inferior sequences and their
growth in larger environments. In addition we compare two
simpler heuristic variants to our algorithm with respect to their
computation time and resulting cost of sweep schedules.

VII. IMPLEMENTATION AND EXPERIMENTS

A. Implementation Details

To solve the connected Line-Clear problem in simply-
connected environments we need to compute c(o|T ik) and
b(T ik). These two costs are the connection between the geome-
try of the environment and the combinatorial perspective of the
problem established in Section V. Accordingly, we combine
ideas from shortest-path roadmaps with edge to edge visibility
considered. For our purposes two edges are visible if there
exists a straight line l between two points on either edge that
is a subset of l ⊂ E . The key observation exploited in [39]
is that two edges are visible either when one of the edges is
visible from an endpoint of the other or when another vertex,
which is not part of either edge, sees both edges (illustrated
in Fig. 8). It hence suffices to look at the visibility polygons

at every vertex since two edges will have a line going through
some vertex.

To compute the shortest path between any two obstacle
edges in our polygon environment classic algorithms like [40]
can be used on the full-visibility graph augmented with edges
towards all reflex vertices (see also [38, Chapter 6.2.4]). Within
this graph there are two types of vertices, those corresponding
to a vertex of an obstacle edge and those corresponding to the
obstacle edge. To search this structure one can use A* with
edge weights corresponding to the distance between reflexive
vertices and reflexive vertices to obstacle edges [41]. A valid
path starts at an obstacle edge, possibly continues across
multiple reflexive vertices, and ends at an obstacle edge. This
determines all b(T ik) in O(nE), with E being the number
of edges in the roadmap, by computing the shortest edge-edge
path for each edge to all others (note that there are n2 different
T ik).

To compute c(o|T ik) we leverage the computation above by
looking up the shortest path between edges ei−1 and eo as well
as ei+k and eo. Let [a1, b1] and [a2, b2] be the last line segment
of these paths which have endpoints b1 and b2 on eo. The point
p on eo that realizes c(o|T ik) has the same angle for [p, xr] and
[p, xl], as shown in Fig. 9. Now, the previous xr and xl may
not anymore be the endpoints of the shortest path from p to
the respective obstacle edges, if the line segment ’peeled’ off
the reflexive vertex, as shown in Fig. 9 for xr. The number of
times this can happen is bounded by the number of reflexive
vertices visible from the obstacle edge eo.

Fig. 8. Thick lines show obstacle edges. Any visibility line between two edges
that is not at an endpoint, shown as a dashed line, can be moved in either
direction until it touches a vertex of another edge. Hence visibility between
any two edges implies a shortest visibility line at a vertex.

B. Polynomial Growth Experiments

The primary concern for the complexity of Algorithm 4 is
the growth of |Õ(T ik)|, in particular that it should not grow
exponentially. To experimentally estimate its growth trend we
implemented the algorithms and tested them with random
polygons of varying sizes ranging from n = 5 to n = 400
vertices. Results are shown in Fig. 10 and hint that the number
of obstacle sequences that have to be considered grows at a
similar rate than the number of choice sets (which is exactly
n2).

Overall this suggests that obtaining O(n3) complexity,
under reasonable conditions, is within reach, since Alg. 3
can potentially be improved to require O(n) steps. Note that
the related Graph-Clear problem is O(n2) on trees (which
correspond to simply-connected environments) and in a sense

11

ei+k
ei�1

eo

↵↵

a) b)

xl

xr

xr

xl

Fig. 9. This figure illustrates how to compute the best split point on an
obstacle edge eo for c(o|T i

k). In part a) the shortest lines between eo and the
two other obstacle edges are shown as dashed lines. The best split point for
the final segment of these two lines is where the angle to the endpoints, xr
and xl, is identical, shown as α. Now, the new shortest line from this point
may not go through these endpoints in which case the procedure has to be
repeated for these endpoints.

the Line-Clear problem has to deal with all possible trees that
can be embedded into Es (with the choices at each choice set
defining the structure of the tree).

l
l

l

l

l

l
l

l
l

l

l

l
l

l
l

l
l

0 100 200 300 400

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Number of vertices

N
um

be
r

of
 s

eq
ue

nc
es

 p
er

 c
ho

ic
e

se
t

llllllllll

l

l

l

l

l

l

l

0
50

00
15

00
0

25
00

0
35

00
0

N
um

be
r

of
 s

eq
ue

nc
es

 in
 to

ta
l

Number of sequences per choice set
Number of sequences in total

Fig. 10. Total number of sequences computed across all choice sets. For
each data point 10 random polygons were constructed and the plot shows the
resulting mean.

C. Further Improvements and Heuristic Comparisons

Additional practical enhancements to Algorithm 4 can avoid
computing the sequences for all choice sets. One simple
improvement to line 4 is to compute the sequences only if the
shortest line that realizes the cost b(T ik) does not pass through
a reflexive vertex of a contaminated obstacles oc ∈ T ik. If it
does, then a split on oc could have executed earlier thereby
avoiding ever reaching a state in which T ik appears. On tests

with polygons with 10 to 400 vertices, we observed that adding
this we can avoid between 11% (for environments with 10
vertices) and 62% (for environments with 400 vertices) of all
choice sets.

To derive some useful “yardsticks” to compare the perfor-
mance of our algorithms with heuristic approaches solving the
same problem, we derive simpler variants of the algorithm. For
example, instead of considering all possible o ∈ T ik in lines 4
to 6 in Algorithm 4, we can introduce a heuristic that chooses
either the best next split osplit = arg mino∈T i

k
{c(o|T ik}

or the best next choices for minimizing the blocking cost
oblock = arg mino∈T i

k
{b(T l) + b(T r)}. This approach reduces

the number of sequences in Õ(T ik) to one for each choice
set, and then we only have to assemble a single sequence in
Algorithm 3. This leads to a single call to Algorithm 1 taking
O(k) time. Hence the overall complexity for these simpler
variants is O(n4). We shall call minimum split the heuristic
choosing the best split, and minimum block the one that selects
the choice for minimizing the best block.

To assess the performance of our optimal algorithm, we
contrast its runtime and solution quality against the heuristics
we just described and display the results in Fig. 11 and Fig.
12.

* * * * * * * * * *

*

*

*

0 100 200 300 400

0
5

10
15

20
25

Number of vertices

T
im

e
(in

 s
ec

on
ds

)

++++++++++ + +
+

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
^

^

*
+
^

 optimal
 minimum split
 minimum block

Fig. 11. A comparison of actual runtimes on a regular consumer laptop (2013
Macbook Pro) between the optimal algorithm and two simplified variants
choosing either a minimum split or minimum block in each choice set. For
each data point 10 random polygons were constructed and the plot shows the
resulting mean and standard error.

Fig. 11 shows that, as expected, the two heuristics are
faster than the optimal algorithm because they consider a
significantly smaller search space. However, Fig. 12 confirms
that there is value in using the optimal algorithm, as the strate-
gies it produces are clearly less costly. Combined, the three
algorithms we presented offer a range of different approaches
to solving instances of the Line-Clear problem.

12

*

*

*
*

* * *

*
*

*

*

*
*

0 100 200 300 400

15
0

20
0

25
0

30
0

35
0

40
0

Number of vertices

C
os

t (
lin

e
cl

ea
r

nu
m

be
r)

+

+

+

+

++++

++
+

+ +

^

^

^

^

^
^ ^

^

^
^

^

^

^

*
+
^

 optimal
 minimum split
 minimum block

Fig. 12. A comparison of cost of strategies resulting from the optimal
algorithm and two simplified variants choosing either a minimum split or
minimum block in each choice set. For each data point 10 random polygons
were constructed and the plot shows the resulting mean.

VIII. DISCUSSION AND CONCLUSION

We presented and formalized the problem of searching
for worst-case intruders in a bounded two dimensional en-
vironment, coined Line-Clear. Through a reduction from a
graph-based pursuit-evasion problem known to be NP-hard,
we showed that Line-Clear is also NP-hard.

We then considered the connected Line-Clear problem in
simply-connected environments and provided a combinatorial
perspective for this restricted setting that is related to the
original problem via a minimal sweep schedule construction.
Exploiting this combinatorial perspective we showed how to
compute optimal sweep schedules based on the sequence in
which they clear all obstacles in the environment. Questions
regarding its complexity remain open and we identified con-
ditions under which the algorithm runs in polynomial time.
Practical considerations regarding the covering of sweep lines
with sensors were addressed in prior work, in addition to
applying the algorithm for simply-connected environments to
multiply-connected environments [4], [42].

Overall, the problem of searching for targets in 2D, as one
would expect, is considerably more challenging than searching
on a graph. While graph-searching algorithms have been
applied to robotics problems [17], [20], [22], [43] the problem
of constructing suitable graphs has remained challenging. The
work presented here fills this gap and in a way the structures
here can be thought of as finding the optimal combinatorial
representation of an environment. In addition, our methods
also exploit techniques from graph-searching, particularly with
the trade-off between the cost to block recontamination and to
further expand a cleared area.

From a theoretical perspective there are a number of open
problems that can now be addressed using our formal problem
definition. Especially the question of whether recontamination
matters is of interest. Visibility-based pursuit-evasion with
unlimited range sensors is not monotone but many graph-based
models are. We conjecture that connected Line-Clear is in fact
monotone and a combination of the proof strategies developed
in [44] with a geometric analysis may lead to a proof of this
conjecture. In addition, the question regarding the number of
inferior obstacle sequences is left open, particularly whether
2D environments can be constructed in which the number of
non-inferior sequences grows exponentially.

From a practical perspective there are more questions that
need to be addressed. One of the first is the consideration of
time-optimal strategies, with some preliminary work presented
in [5]. Second one should consider a distributed variant, similar
to [36] and [3], that utilizes the theoretical insights developed
here and investigates the trade-off between the time it takes
to clear a known and an unknown environment. Thirdly, one
can consider probabilistic aspects of the search problem and
integrate these into Line-Clear. In particular, the relaxation
of the target model from worst-case to probabilistic models,
as already successfully done for graphs in [45], bears some
promise. In the context of visibility-based pursuit-evasion this
has been attempted in [46]. Further probabilistic considerations
can be made with regard to maximizing the expected time
to capture, similar to what was done in [43] for graphs.
Probabilistic sensors could also be considered building on the
work in [21] and [47] which consider probabilistic detection
for graph-based and visibility-based models respectively.

The basic ideas of this paper may also be extended to
3D environments, although the computation of smallest sweep
planes (the 3D analogue of shortest sweep lines) and how to
cover them with sensors is more difficult. But the order in
which to move such planes may have a similar structure.

APPENDIX

Proof of Theorem 1: We first show how to construct a
sweep schedule for E3 from an edge-searching strategy for
G3. Let S(G3) be an optimal edge-searching strategy for G3,
i.e., an edge-searching strategy for G3 using s(G3) searchers.
We now show how to construct a schedule τ to clear E3
with cost s(G3). As shown in [14], recontamination does not
improve edge-searching strategies, and hence, without loss of
generality, we can assume that S(G3) does not recontaminate
edges. To prevent recontamination, if a vertex v has at least one
edge contaminated and one cleared there must be a searcher
located in v.

A sweep schedule τ for E3 can be constructed by moving
sweep lines through the corridors of E3 based on how S(G3)
clears G3. Let us consider a vertex v with degree 3 and show
how edges incident to v are cleared. During the execution of
S(G3) the edges of v are either cleared by a searcher moving
in or out of v. An edge (v1, v) is cleared moving in if the
searcher moves from v1 to v, whereas it is cleared moving
out if the searcher moves from v to v1. Let e1, e2, and e3
be the first, second, and third edge of v that are cleared in

13

S(G3). Note that since we ruled out recontamination, each
edge is cleared only once and the order is then well defined.

If e1 = (v, v1) is cleared by an out step, then there must be
at least two searchers on v prior to this step. Two searchers
are needed because one will move along e1 whereas the other
will stay in v to prevent recontamination because edges e2 and
e3 are still contaminated. The associated sweep schedule τ in
E3 will be as follows. Two sweep lines l1, l2 are added to τ
to cover A(e1) ∩ A(v), i.e., P̄ (l1) = P̄ (l2) = A(e1) ∩ A(v).
Sweep line l1 is then moved through A(e1) to clear it, stopping
at A(e1)∩A(v1). If e1 is cleared by an in step, then a sweep
line from its neighbor vertex is moving through A(e1) and
stops at A(e1)∩A(v). Fig. 13 illustrates these two cases. Note
that because of the assumptions made about d, one searcher
suffices to clear the corridor, and one searcher can prevent
recontamination, i.e., c(l1) = c(l2) = 1.

Similarly, if e2 is cleared by an out step, there must be two
searchers in v to prevent recontamination from e3. In τ we
have one sweep line l with P̄ (l) = A(e1)∩A(v). We move l
at cost at most 2 to split on A(v)∩ (A(e2)∪A(e3)) into two
sweep lines l1, l2, each at cost 1, with P̄ (l1) = A(e2) ∩A(v)
and P̄ (l2) = A(e3) ∩ A(v). Sweep line l1 is then moved
through A(e2) whereas l2 prevents recontamination. If e2 is
cleared by an in step, then the new sweep line merges with
the existing sweep line in τ and moves towards A(v)∩A(e3).

For e3, in and out, either the sweep line at A(v) ∩ A(e3)
is moved outward or a new sweep line is coming in through
e3. Fig. 13 illustrates the above. The cases for vertices with
degree one and two are analogue and omitted for brevity. It
is now immediate to verify that if two edges of v are cleared,
then so is A(v) and if an edge e is clear then so is A(e).
Similarly, the number of agents is the same as the cost for the
sweep lines. Hence τ clears E3 at cost s(G3).

Next we show how to construct an edge-searching strategy
from a given sweep schedule. Let τopt be an optimal sweep
schedule for E3. We can construct an edge-searching strategy
Sτopt(G

3) by reversing the idea described above. Note that
because s(G3) is strictly speaking not known yet (since we
only have an optimal sweep schedule), the construction of E3
for this direction uses R(l) > lc(E3) instead of R(l) > s(G3).
For this, we order all corridors A(e) by the time at which they
are cleared last.6 Now, construct an edge-searching strategy
Sτopt(G

3) which clears all edges e in the same order as A(e),
adding and removing searchers to guard vertices wherever
necessary.7

It is easy to verify that the cost of Sτopt(G
3) is not more

than than lc(E3) by using the fact that R(l) > s(G3) (or
R(l) > lc(E3)). This forces every sweep line to be contained
within their corridors as they move between the areas asso-
ciated to vertices. Together with the above construction of a
sweep schedule from a strategy this proves the claim. �

Proof of Lemma 1 By definition cmaxsj (O) is non-decreasing.
Hence, two critical steps with sj′ and sj with j′ < j satisfy

6Note that we need the last since it is not proven that Line-Clear is
monotone.

7An optimal edge-searching strategy can also be written as a sequence of
only edge moves, since the placement and removal of searchers on vertices
is implicitly given by the constraints from avoiding recontamination.

add
add

out

in

out

add
add

out

out

add out

out
add

out

in

out

in

in

Case 1

Case 2

Case 5

Case 3/4

Fig. 13. An illustration of the relevant cases for constructing a sweep schedule
from an edge-searching strategy on a graph G3. Cleared areas are grey and
sweep lines are dashed lines.

cmaxsj′
(O) ≤ cmaxsj (O) and by definition of critical steps it fol-

lows that bsj′ (O) ≥ bsj (O). Assuming the removal of dupli-
cate critical steps we have cmaxsj′

(O) < cmaxsj (O) and therefore
bsj′ (O) > bsj (O) (otherwise we get a contradiction to sj′

being a critical step). Since cmaxs (O) is non-decreasing and
bsj (O) is decreasing it follows that ρs(O) is non-decreasing.
Statement 3 also follows directly from cmaxsj′

(O) < cmaxsj (O),
i.e., the step s that assumes the maximum must occur between
sj−1 and sj or at sj . �

Proof of Theorem 2: First we will express the costs for
O in terms of Ol and Or. We write os, o

l
s and ors for the

elements in the sequences O, Ol and Or, respectively, and use
the superscripts l and r when referring to the left and right
subsequences. Given any O, by definition we have c1(O) =
c(o1|T ik) and b1 = b(T l)+b(T r). For the remaining os, s ≥ 2,
we have a corresponding obstacle index either in Ol or Or.
To identify this index we write, for every s = 2, . . . , k,

l(s) := max{0,max{s′ | ∃s′′ ≤ s : ols′ = os′′}},
for the last index in Ol whose obstacle corresponds to one
of {o1, . . . , os} (or 0 if there is no such index). For r(s) the
definition is analogous. For s > 1 we can now write:

cs(O) = bl(s−1)(O
l) + br(s−1)(O

r) + c(os|T s)− b(T s).
Written in this manner is becomes clear that c(os|T s) −

b(T s) is independent of the ordering of indices from Ol and
Or in O, i.e., it is simply the additional cost required to move
a sweep line that is blocking T s with cost b(T s) to split
on os. The terms bl(s−1)(Ol) and br(s−1)(Or) are the parts
with which the left side contributes to the cost when clearing
an obstacle on the right side and vice versa. Here is where

14

the term ρ becomes relevant since it determines the trade-off
between continuing on the left or right. The statement of the
lemma can also be interpreted in colloquial terms as saying
that no other obstacle sequence O can have a better critical
step than Oa.

First let us show that we only need to consider sequences
that change between Ol and Or after a critical step in Ol and
Or. Consider sj and sj+1, two consecutive critical steps in
Ol. All steps in between s ∈ (sj , sj+1) either satisfy:

1) cmaxs (Ol) > cmaxsj (Ol) and bs(Ol) ≥ bsj (Ol) or
2) cmaxs (Ol) = cmaxsj+1

(Ol) and bs(Ol) ≥ bsj+1
(Ol).

This means that they either have a higher total cost but no
benefit in blocking, or they already have the same total cost
as the next critical step which reduces the blocking cost by at
least as much. Now, if we add a step os to O from the left
side Ol and it is not critical and the next step os+1 is on the
right side Or, then in case 1) the removal of all previous steps
until olsj (and in case 2) the addition of all steps until olsj+1

)
would not lead to a worse sequence.

Therefore, we can simplify the cost representation further
by only considering the steps cj which ocj = olsj or oaj = orsj
for some critical step sj in either Ol or Or. Since cmaxl(cj)

(Ol)

and cmaxr(cj)
(Or) are non-decreasing sequences in j we get:

max
cj−1<s≤cj

cs(O) =

{
br(cj−1)(O

r) + cmaxl(cj)
(Ol), if ocj ∈ Ol

bl(cj−1)(O
l) + cmaxr(cj)

(Or), otherwise.

Also note that bl(cj)(O
l) and br(cj)(O

r) are both non-
increasing sequences in j. Now let O be any obstacle sequence
with Ol and Or as subsequences. Write cj for the steps at
which the critical steps on the right and left are added to O.
Similarly, write caj for the same for Oa. Let aj be the first
step so that ocj 6= oacaj , i.e., the first difference in critical steps
between O and Oa. Without loss of generality, let ocj ∈ Ol,
and hence oacaj ∈ O

r. Note that caj−1 = cj−1 and oacaj−1
= ocj−1

and consider the following:

ρl(cj)(O
l) ≥ ρr(caj)(O

r)

cmaxl(cj)
(Ol)− bl(cj−1)(O

l) ≥ cmaxr(caj)
(Or)− br(caj−1)

(Or)

cmaxl(cj)
(Ol) + br(caj−1)

(Or) ≥ cmaxr(caj)
(Or) + bl(cj−1)(O

l)

cmaxl(cj)
(Ol) + br(cj−1)(O

r) ≥ cmaxr(caj)
(Or) + bl(caj−1)

(Ol)

max
cj−1<s≤cj

cs(O) ≥ max
caj−1<s≤caj

cs(O
a).

Let b be the index at which ob = oacaj−1+1 and oy = oacaj .
Consider the sequence

O′ = {o1, . . . , ocj−1 , o
a
caj−1+1, . . . , o

a
caj
,

ocj−1+1, . . . , ob−1, oy+1, . . . , ok}

based on O but with the indices oacaj−1+1 to oacaj moved to the
position they have in Oa. Now since maxcj−1<s≤cj cs(O) ≥
maxcaj−1<s≤caj cs(O

a) and bl(caj)(O
l) < bl(cj−1)(O

l) the only
difference between O and O′ is that the blocking cost on
the left is reduced earlier without incuring a larger cmax.

Hence all subsequent costs are either the same or lower, i.e.,
∀s, s′ with os = o′s′ we have:

bs′(O
′) ≤ bs(O) and cmaxs′ (O′) ≤ cmaxs (O).

Repeating the above procedure for O′, which is now identi-
cal up to obstacle oacaj with Oa we can move all steps into the
order they are in Oa without incurring larger cmax or larger
b costs.

At this point, the statement follows from a simple contra-
diction. Assume that there is an O with an s ∈ S(O) and
s′ ∈ S(Oa) so that

cmaxs (O) < cmaxs′ (Oa) and bs(O) ≤ bs′(Oa).

Let oas′′ = os and by the above construction

cmaxs (O) ≥ cmaxs′′ (Oa) and bs(O) ≥ bs′′(Oa)

and hence

cmaxs′ (Oa) > cmaxs′′ (Oa) and bs′(Oa) ≥ bs′′(Oa)

which contradicts s ∈ S(Oa). �

REFERENCES

[1] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational geometry: algorithms and applications. Springer, 2000.

[2] A. Kolling and S. Carpin, “Surveillance strategies for target detection
with sweep lines,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2009, pp. 5821–5827.

[3] ——, “Multi-robot pursuit-evasion without maps,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2010, pp.
3045–3051.

[4] A. Kolling and A. Kleiner, “Multi-uav motion planning for guaranteed
search,” in Proceedings of the Twelth International Joint Conference on
Autonomous Agents and Multiagent Systems, 2013, pp. 79–86.

[5] A. Kolling, A. Kleiner, and P. Rudol, “Fast guaranteed search with
unmanned aerial vehicles,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013.

[6] T. Chung, G. Hollinger, and V. Isler, “Search and pursuit-evasion in
mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316, 2011.

[7] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe
moving targets: Review,” IEEE Transactions on Cybernetics, to appear.

[8] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey
from the control perspective,” Journal of Intelligent & Robotic Systems,
vol. 72, no. 2, pp. 147–165, 2013.

[9] N. Noori, A. Beveridge, and V. Isler, “Pursuit-evasion: A toolkit to
make applications more accessible [tutorial],” IEEE Robotics Automation
Magazine, vol. 23, no. 4, pp. 138–149, 2016.

[10] T. Parsons, “Pursuit-evasion in a graph,” in Theory and Applications of
Graphs, Y. Alavi and D. R. Lick, Eds. Springer Berlin / Heidelberg,
1978, vol. 642, pp. 426–441.

[11] B. Alspach, “Searching and sweeping graphs: a brief survey,” Le
matematiche, vol. 59, no. 1, 2, pp. 5–37, 2006.

[12] F. V. Fomin and D. M. Thilikos, “An annotated bibliography on
guaranteed graph searching,” Theoretical Computer Science, vol. 399,
no. 3, pp. 236–245, 2008.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” Journal of the
ACM, vol. 35, no. 1, pp. 18–44, 1988.

[14] A. S. LaPaugh, “Recontamination does not help to search a graph,”
Journal of the ACM, vol. 40, no. 2, pp. 224–245, 1993.

[15] B. Yang, D. Dyer, and B. Alspach, “Sweeping graphs with large clique
number,” Lecture notes in computer science, pp. 908–920, 2004.

[16] F. V. Fomin and D. M. Thilikos, “On the monotonicity of games
generated by symmetric submodular functions,” WG 2001: 177-188,
2001.

[17] G. Hollinger, A. Kehagias, and S. Singh, “GSST: Anytime guaranteed
search,” Autonomous Robots, vol. 29, no. 1, pp. 99–118, 2010.

15

[18] A. Kolling, A. Kleiner, M. Lewis, and K. Sycara, “Solving pursuit-
evasion problems on height maps,” in ICRA2010 Workshop: Search
and Pursuit/Evasion in the Physical World: Efficiency, Scalability, and
Guarantees, 2010.

[19] ——, “Pursuit-evasion in 2.5d based on team-visibility,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 4610 – 4616.

[20] A. Kleiner, A. Kolling, M. Lewis, and K. Sycara, “Hierarchical visibility
for guaranteed search in large-scale outdoor terrain,” Autonomous Agents
and Multi-Agent Systems, pp. 1–36, 2011.

[21] A. Kolling and S. Carpin, “Probabilistic Graph-Clear,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2009,
pp. 3508–3514.

[22] ——, “Pursuit-evasion on trees by robot teams,” IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 32–47, 2010.

[23] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, “Capture of an
intruder by mobile agents,” in Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures. New York,
NY, USA: ACM Press, 2002, pp. 200–209.

[24] D. Dereniowski, “Connected searching of weighted trees,” Mathematical
Foundations of Computer Science 2010, pp. 330–341, 2010.

[25] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a
polygonal region,” SIAM Journal on Computing, vol. 21, no. 5, pp.
863–888, 1992.

[26] S. M. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and R. Motwani,
“Finding an unpredictable target in a workspace with obstacles,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 1997, pp. 737–742.

[27] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,” International Journal of
Computational Geometry and Applications, vol. 9, pp. 471–494, 1999.

[28] S. Sachs, S. M. LaValle, and S. Rajko, “Visibility-based pursuit-evasion
in an unknown planar environment.” The International Journal of
Robotics Research, vol. 23(1), pp. 3–26, 2004.

[29] N. M. Stiffler and J. M. O’Kane, “A complete algorithm for visibility-
based pursuit-evasion with multiple pursuers,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2014, pp.
1660–1667.

[30] ——, “Pursuit-evasion with fixed beams,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2016, pp. 4251
– 4258.

[31] K. J. Obermeyer, A. Ganguli, and F. Bullo, “A complete algorithm
for searchlight scheduling,” International Journal of Computational
Geometry and Applications, vol. 21, no. 1, pp. 101–130, 2011.

[32] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and
T. M. Murali, “Sweeping simple polygons with a chain of guards,”
in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
2000, pp. 927–936.

[33] X. Tan, “Sweeping simple polygons with the minimum number of chain
guards,” Information processing letters, vol. 102, no. 2-3, pp. 66–71,
2007.

[34] S. Bopardikar, F. Bullo, and J. P. Hespanha, “On discrete-time pursuit-
evasion games with sensing limitations,” IEEE Transactions on Robotics,
vol. 24, no. 6, pp. 1429–1439, 2008.

[35] R. Isaacs, Differential Games. Wiley, New York, NY, 1965.
[36] J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion

without mapping or global localization via local frontiers,” Autonomous
Robots, vol. 32, no. 1, pp. 81–95, 2012.

[37] B. Monien and I. H. Sudborough, “Min cut is NP-complete for edge
weighted trees,” Theoretical Computer Science, vol. 58, no. 1-3, pp.
209–229, 1988.

[38] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[39] S. K. Wismath, “Computing the full visibility graph of a set of line
segments,” Information processing letters, vol. 42, no. 5, pp. 257–261,
1992.

[40] T. Lozano-Pérez and M. Wesley, “An algorithm for planning collision-
free paths among polyherdral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[41] G. Gallo and S. Pallottino, “Shortest path algorithms,” Annals of
Operations Research, vol. 13, no. 1, pp. 1–79, 1988.

[42] A. Kleiner and A. Kolling, “Guaranteed search with large teams of
unmanned aerial vehicles,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2013, pp. 2977 – 2983.

[43] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-
robot search for a moving target,” The International Journal of Robotics
Research, vol. 28, no. 1, pp. 201–219, February 2009.

[44] D. Bienstock and P. Seymour, “Monotonicity in graph searching,”
Journal of Algorithms, vol. 12, no. 2, pp. 239–245, 1991.

[45] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, “Ran-
domized pursuit-evasion in graphs,” Combinatorics Probability and
Computing, vol. 12, no. 3, pp. 225–244, 2003.

[46] B. Tovar and S. M. LaValle, “Visibility-based pursuit-evasion with
bounded speed,” in Proceedings of the Workshop on Algorithmic Foun-
dations of Robotics, 2006, pp. 475–489.

[47] N. M. Stiffler, A. Kolling, and J. M. O’Kane, “Persistent pursuit-evasion:
The case of the preoccupied pursuer,” in Robotics and Automation, 2017
IEEE International Conference on. IEEE, 2017, pp. 5027–5034.

Andreas Kolling is a scientist and technology lead
at iRobot. He received a Ph.D. degree in electrical
engineering and computer science in 2009 from
the University of California, Merced, and a M.S.
degree in computer science in 2006 and B.S. degree
in mathematics in 2004 from Jacobs University,
Bremen, Germany. From 2013 to 2016 he was an
assistant professor in the Department of Automatic
Control and Systems Engineering at The University
of Sheffield, UK, where he led the multi-robot sys-
tems lab. From 2010 to 2012 he was a postdoctoral

research fellow at the Robotics Institute at Carnegie Mellon University and
at the University of Pittsburgh. His research interests include planning, multi-
robot systems, and human-robot interaction. He has served as a general co-
chair for DARS in 2016, as associate editor for ICRA and IROS since 2014,
and as guest editor for Autonomous Robots for the special issue ’Distributed
Robots: From Fundamentals to Applications’.

Alexander Kleiner received a M.Sc. degree (with
distinction) in computer science at the Stafford Uni-
versity, UK, in 2000, a Ph.D degree (magna cum
laude) in computer science at the University of
Freiburg, Germany in 2008, and a docent degree
(habilitation) at Linkoeping University, Sweden, in
2013. He was a postdoctoral fellow at Carnegie
Mellon University in 2010 and at La Sapienza Uni-
versity, Rome, Italy in 2011. From 2011 to 2014
he was associate professor at Linkoeping University,
Sweden, where he led the research group on collab-

orative robotics.From 2014 to 2017 he worked as a scientist and technology
lead at iRobot, and now works as President of AI for FaceMap LLC. His
research interests include collaborative robotics, navigation planning, and
machine learning. From 2006 to 2014 he served as a member of the executive
committee of RoboCup, and since 2008 as member of the IEEE Technical
Committee on Safety Security and Rescue Robotics. He served as General
Chair of the SSRR in 2013 and program chair in 2012. From 2012 to 2017
he served as an associate editor for IROS and ICRA.

Stefano Carpin is Professor of engineering at the
University of California, Merced. He received Lau-
rea (M.Sc.) and Ph.D. degrees in electrical engi-
neering and computer science from the University
of Padova, Italy in 1999 and 2003, respectively.
From 2003 to 2006 he held faculty positions with
Jacobs University Bremen, Germany. Since 2007 he
has been with the School of Engineering at UC
Merced, where he established and leads the robotics
laboratory. His research interests include mobile and
cooperative robotics for service tasks, and robot

algorithms. He is an associate editor for the IEEE Transactions on Automation
Science and Engineering and for the IEEE Robotics and Automation Letters.
From 2006 to 2009 he was an elected executive member of the RoboCup
federation. Under his supervision, teams participating in the RoboCup Virtual
Robots Rescue competition won second place in 2006 and 2008, and first
place in 2009.

