
1

Speeding up Routing Schedules on Aisle-Graphs
with Single Access

Francesco Betti Sorbelli, Stefano Carpin, Senior Member, IEEE, Federico Corò, Sajal K. Das, Fellow, IEEE,
Alfredo Navarra, and Cristina M. Pinotti, Senior Member, IEEE

Abstract—In this paper, we study the Orienteering Aisle-
graphs Single-access Problem (OASP), a variant of the orien-
teering problem for a robot moving in a so-called single-access
aisle-graph, i.e., a graph consisting of a set of rows that can be
accessed from one side only. Aisle-graphs model, among others,
vineyards or warehouses. Each aisle-graph vertex is associated
with a reward that a robot obtains when visits the vertex itself.
As the robot’s energy is limited, only a subset of vertices can be
visited with a fully charged battery. The objective is to maximize
the total reward collected by the robot with a battery charge. We
first propose an optimal algorithm that solves OASP in O(m2n2)
time for aisle-graphs with a single access consisting of m rows,
each with n vertices. With the goal of designing faster solutions,
we propose four greedy sub-optimal algorithms that run in at
most O(mn (m + n)) time. For two of them, we guarantee an
approximation ratio of 1

2
(1 − 1

e
), where e is the base of the

natural logarithm, on the total reward by exploiting the well-
known submodularity property. Experimentally, we show that
these algorithms collect more than 80% of the optimal reward.

Index Terms—Orienteering problem, routing, submodularity.

I. INTRODUCTION

ROUTE planning is a key problem in robotics and sensor
networks. A classic instance requires that the robot visits

multiple Points of Interest (POIs) to perform some tasks,
such as to collect data, deliver a package, or perform some
repairs. Depending on the environment in which a robot
moves, and based on its capabilities, different trajectories
could be calculated. The decision-making process of selecting
a trajectory is inherently tied to the energy (fuel) consumption,
because a robot must be able to reach its destinations, perform
the assigned tasks, and then return to a recharge/refueling
station before it runs out of power and remains stranded in
the environment.

In this paper, we focus on a robot moving on a specific
environment modeled as a graph that belongs to the so-called

Francesco Betti Sorbelli and Sajal K. Das are with Dept. of Computer
Science, Missouri Univ. of Science and Technology, Rolla, MO, USA.
Stefano Carpin is with the Department of Computer Science and Engineering,
University of California, Merced, CA, USA. Federico Corò is with the
Department of Computer Science, Sapienza University of Rome, Italy. Alfredo
Navarra and Cristina M. Pinotti are with Department of Computer Science
and Mathematics, University of Perugia, Italy.
This work was supported by Intelligent Systems Center (ISC) at Missouri
S&T, by NSF grants SCC-IRG-1952045 and OAC-1725755. Moreover, it has
been partially supported by ”HALY-ID” project which has received funding
from the European Union’s Horizon 2020 under grant agreement ICT-AGRI-
FOOD no. 862665, no. 862671, and from MIPAAF. S. Carpin was partially
supported USDA-NIFA under award # 2017-67021-25925. Any opinions,
findings, conclusions, or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the funding
agencies.

aisle-graphs family recently introduced in [1]. Specifically, we
assume the environment is modeled by a set of vertices in
rows (aisles) accessible through one column (junction line)
at one endpoint of the rows (see Figures 1 and 3). This is
indeed the topology that can be abstracted from Figure 1a
and Figure 1b when the robots perform complex tasks. In a
vineyard, for example, when the robot moves along a row
it has grapevines on its left and right. For complex tasks,
like picking grapes in vineyards [2] (or pruning trees in
orchards [3]), the robot must act on both the left and right
side of the aisles. Since the growth of grapes on vines is
not homogeneous inside a vineyard, often an indiscriminate
full visit is not the most appropriate choice, especially for
autonomous energy-constrained vehicles. The aisle can then be
seen as a two-line aisle: going back and forth, the robot uses
the two different lines and serves always the grapevines on its
left (see Figure 2). Consequently, in this scenario, the robot
always enters and exits from the same side of the vineyard.
The same concept can be applied inside a warehouse, like that
in Figure 1b. In fact, in a warehouse aisle, there are shelves
on the left and on the right from which the robot can pick
items. Interestingly, a commercial solution which implements
a warehouse system with single access for pallets (flat wooden
structure) is proposed in [4].

(a) Vineyard.

(b) Warehouse.

Fig. 1. Real examples of aisle-structures with single access.

2

In the applications we sketched above, the budget is de-
termined by the maximal distance a robot can travel on a
single battery charge, the cost of an edge is its length (or
the amount of energy spent to traverse it), and the reward of
a vertex is the utility generated by the robot by performing an
assigned task at a certain location associated with the vertex.
Given a single-access aisle-graph with a reward associated to
each vertex, and assuming an unitary cost for traversing any
edge, our objective is to determine a cycle in the graph that
can be traversed without exceeding the preassigned constant
budget and maximizes the total sum of the rewards of the
visited vertices. This is a new variant of the well known Ori-
enteering Problem (OP) [5], called Orienteering Aisle-graphs
Single-access Problem (OASP). As in the original orienteering
problem, the reward of visiting a vertex is collected only the
first time the vertex is visited by the robot, whereas the cost
for traversing an edge is charged as many times as the robot
traverses such an edge.

Fig. 2. Abstraction of aisle-graph.

As will be discussed below, for general graphs, the orien-
teering problem is known to be NP -hard [5], thus motivating
the design of heuristics, or approximation algorithms. How-
ever, for the special class of aisle-graphs with a single access,
the OASP variant of the orienteering problem is polynomially
solvable as we prove in Section IV. The optimal algorithm
OPTSA, whose time complexity is a polynomial of grade 4 in
the maximum between the number of aisles and the number
of vertices composing a single aisle, may be not scalable in
real-world applications with tens of thousand aisles, each with
hundreds of vertices. For example, commercial vineyards often
feature units (called blocks) with more than 50, 000 vines
arranged in hundreds of rows with 200 or more trees. The po-
tentially large size of aisle-graphs and the fact that the robot’s
trajectory has to be frequently recomputed due to the reward
changes, motivate us to search also for simpler and faster sub-
optimal solutions with guaranteed reward. Accordingly, we
then propose four greedy algorithms, and for two of them
we prove a constant factor approximation ratio between the
reward of their solutions and that of the optimal solution.

Contributions. Our results are summarized as follows:

• We provide a polynomial time optimal algorithm, called
Optimum Single Access (OPTSA), for the Orienteering
Aisle-graphs Single-access Problem (OASP).

• We design two greedy heuristic algorithms, called Greedy
Max Element (GDYME) and Greedy Max Cumulative
(GDYMC), which are more efficient in terms of time and
space complexity with respect to the optimal solution.

• We provide two additional greedy approximation algo-
rithms faster than the optimal one, but slower than the
greedy ones, called Approximate Max Ratio Element
(APXMRE) and Approximate Max Ratio Cumulative
(APXMRC), which provide a 1

2 (1 − 1
e)-approximation

guarantee in terms of the collected reward by exploiting
submodularity properties – with e being the base of the
natural logarithm.

• We evaluate the performance of our algorithms on syn-
thetic and real data, showing that the approximation
algorithms collect more than 80% of the optimum reward.

This paper extends preliminary results presented in [6]
and [7]. In particular, the algorithm OPTSA discussed herein
was first introduced in [6] but is here adapted to solve a
different problem, i.e., OASP. Its optimality proof is also new
and has never appeared before. Moreover, we provide a much
thorough experimental comparison for all the algorithms on a
set of real-world data obtained from a large scale commercial
vineyard.

Organization. The rest of the paper is organized as follows.
Section II reviews the related work on the orienteering prob-
lem. Section III formally defines the problem and submodu-
larity properties. Section IV introduces the OPTSA algorithm,
a polynomial-time optimal algorithm for OASP, and prove its
optimality. Section V proposes four greedy algorithms in de-
tails, while Section VI proves a constant factor approximation
for the APXMRE and APXMRC algorithms by exploiting the
submodularity property. Section VII evaluates the effectiveness
of our algorithms on large scale instances through simulation
experiments. Section VIII offers conclusions.

II. RELATED WORK

In this section, we provide selected references to previous
works on the orienteering problem and submodularity.

Orienteering. Orienteering is a classic combinatorial opti-
mization problem defined over graphs with costs associated
with edges and rewards associated with vertices. Introduced
in [5], the orienteering problem is also known in the literature
as the bank robber problem [8] and a few other names [9].
Orienteering was shown to be NP -hard in [5] and APX -hard
in [10]. Numerous variants of the orienteering problem have
been proposed in the literature. For example, the start vertex
may be fixed (rooted orienteering problem) or not (unrooted
orienteering problem), edges can be directed or undirected,
vertices in the graph may be placed on a plane, or there may be
more than one robot collecting rewards. The reader is referred
to [11] for a survey of different formulations. Due to its in-
trinsic computational complexity, numerous heuristic solutions
have been proposed in literature [11]. Exact solutions using
branch and bound techniques have been proposed as well [12],
but do not scale to problem instances with tens of thousands
of vertices like those motivating this work. A different line of

3

research has aimed at developing approximation algorithms
for orienteering, often providing specialized results applicable
only to restricted versions of the problem. For the rooted
version of the problem, the first constant-factor approximation
was given in [13], where the authors give a 4-approximation.
This result was later improved in [14], where for the case of
directed graphs the authors give a O(2 + ε)-approximation
with a time complexity of nO(1

ε2
) (where n is the number of

vertices in the graph), and for the case of undirected graphs,
the authors provide an O(log2 OPT)-approximation, where
OPT is the number of vertices in an optimal solution. For the
case where the graph is planar and fully connected, a (1 + ε)-
approximation algorithm was proposed in [15].

Orienteering Applications in Robotics. Orienteering has
found various applications in robotics. These include precision
irrigation [16] and robotic harvesting [17]. The orienteering
framework has also been used to study surveillance prob-
lems [18], monitoring [19], and information gathering [20].
Stochastic extensions of the orienteering problem with random
edge costs have also been used to study survival problems
where multiple robots are navigating a dangerous environment
and the objective is to visit locations while ensuring a minimal
probability of success [21].

Orienteering Based on Submodularity. There exist other
works where the orienteering problem is approached observing
that the collected rewards may follow the well known sub-
modularity property. A function is submodular if its marginal
increment (when a single element is added to the input set)
decreases as the size of the input set increases [22].

The aforementioned paper [21] as well as [23] studied a
multi-robot coordination problem modeled as an orienteering
problem for general graphs leveraging on the submodularity
property. The authors consider a team of robots tasked with
visiting sites in a risky environment and subject to team-
based operational constraints. Such a problem is modeled
using a graph and a matroid for capturing the team-based op-
erational constraints. The formulated Matroid Team Surviving
Orienteers (MTSO) problem has a submodular structure, and
hence polynomial-time algorithms with a guaranteed solution
are developed. In [24], [25], approximation algorithms are
proposed for the Team Orienteering Problem in the context
of mobile charging of rechargeable sensors. This problem
has many potential applications related to the Internet of
Things (IoT) and smart cities, such as dispatching energy-
constrained mobile chargers to charge as many energy-critical
sensors as possible to prolong the network lifetime. In [26], the
submodularity property is used to design a trajectory planning
algorithm for an aerial 3D scanning employing a drone. The
authors leveraged submodularity to develop a computationally
efficient method for generating scanning trajectories, that rea-
sons jointly about coverage rewards and travel costs. However,
none of the above works addresses the constrained aisle-graph
structure.

In [27], an approximation algorithm is proposed that runs
in quasi-polynomial time for the submodular tree orienteering
problem. Differently from us, they work on directed graphs.
Moreover, their approximation ratio is log k

log log k , where k ≤

|V | is the number of vertices in an optimal solution, while
in our work we guarantee a constant approximation ratio of
1
2 (1 − 1

e). In [28], an interesting new problem called Robust
Multiple-Path Orienteering Problem, in which the main goal is
to construct a set of paths for robots guaranteeing robustness
in case of malicious attacks, is proposed. The authors provided
an approximation algorithm based on submodularity.

Orienteering on Aisle-graph Family. The orienteering prob-
lem for aisle-graphs was first investigated in [1] which con-
sidered variants on the graph topology and robot capabilities
along with experimental results. The authors in [1], working
on aisle-graphs with two accesses (two junction lines, one at
each endpoint of the aisles), proposed two greedy heuristics,
Greedy Full-Row (GFR) and Greedy Partial-Row (GPR),
which respectively select a subset of full or partial rows to
be traversed. At each selection, the robot computes the budget
required to collect rewards from its current position and prefers
full/partial rows with maximum reward per unit of budget.
The time complexities of GFR and GPR are O(m2) and
O(m2n), respectively, where m is the number of aisles and n
is the number of vertices composing each aisle. The authors
in [6] developed polynomial-time algorithms to improve some
of the problems faced in [1]. In particular, they designed
an optimal algorithm, called Optimal Full-Row Improved
(OFR-I), that improves on GFR by determining the optimal
solution for the full-row policy, whose time complexity is
O(m · max{n, logm}). Moreover, they proposed Heuristic
General-case (HGC), which slightly improves on GPR at a
higher time complexity. In [29], authors studied the problem of
routing multiple robots within a vineyard, where movement is
limited when a row is entered, for the application of precision
irrigation, proposing three algorithms combining GFR and
GPR either in series or in parallel.

In a seminal paper in [30], aisle-graphs have been inves-
tigated for solving the original version of the well known
Traveling Salesman Problem (TSP). The OP is a particular
variant of TSP where profits/rewards are introduced. In other
words, the goal of TSP is only to find the minimum cost cycle
in the area such that all the points are visited exactly once.
Despite TSP is NP -hard [31] on general graphs, the authors
in [30] have found an optimal polynomial algorithm (linear in
the number of aisles) for aisle-graphs with two accesses based
on an efficient dynamic programming approach. Further, this
result has been generalized by the authors in [32] providing
an optimal pseudo-polynomial algorithm with time complexity
O(nh7h) where h ≤ n denotes the number of horizontal
accesses in the area.

Finally, in [33], aisle-graphs are used to model a warehouse
where an automated picking system is implemented. The
distance traveled for collecting items belonging to a customer
order by a robot, forced to follow the aisles, is compared with
the distance traversed by a drone that accomplishes the same
goal flying freely inside the warehouse.

III. PROBLEM DEFINITION

Consider an undirected aisle-graph A(m,n) = (V,E),
where m denotes the number of rows (aisles), n denotes

4

the number of columns (number of vertices composing each
aisle), while rows are all connected only via the first column.
Formally, the set of vertices is defined as V = {vi,j |1 ≤ i ≤
m, 1 ≤ j ≤ n}. The set of edges E is defined as follows:
• Each vertex vi,j with 1 ≤ i ≤ m and 1 < j < n has two

edges, one toward vi,j−1 and the other toward vi,j+1;
• each vertex vi,1 with 1 < i < m has three edges: one

toward vi−1,1, one toward vi+1,1, and one toward vi,2.
Accordingly, edges connected to the corner vertices v1,1
are vm,1 are well defined.

Problem 1 (Orienteering Aisle-graphs Single-access Prob-
lem (OASP)). Let A(m,n) be an aisle-graph; v1,1 ∈ V be
the home vertex; R : V → R≥0 be a reward function where
R(vi,j) = 0 if j = 1; let α be a positive constant cost (in terms
of the budget required) to traverse any edge; let B > 0 be the
budget, i.e., the maximum distance that can be traveled along
edges. The OASP aims to find a cycle of maximum reward
starting at v1,1 of cost no greater than B.

Without loss of generality, we assume α = 1. Figure 3
shows an aisle-graph A(4, 5). The vertices in the first column
(for j = 1) do not provide any reward, and they are used
simply to connect the m rows. In what follows, by ri and cj
we denote the i-th row and the j-th column of A, respectively,
and by R = {r1, . . . , rm} and C = {c1, . . . , cn} the set of
rows and columns of A, respectively.

v4,1 v4,2 v4,3 v4,4 v4,5

v3,1 v3,2 v3,3 v3,4 v3,5

v2,1 v2,2 v2,3 v2,4 v2,5

v1,1 v1,2 v1,3 v1,4 v1,5

1

2

1

3

2

8

1

1

2

9

9

4

3

9

6

1

Fig. 3. Aisle-graph A(4, 5); the interconnecting vertices are in dark, the home
vertex is the grayest, the edges costs are unitary, and the rewards R(vi,j) are
in blue (note that interconnecting vertices have no reward).

A. Submodularity

In this section, we revise the fundamental definition of
submodularity that will be used to derive some of our results.

Definition 1 (Submodularity [22]). Given a finite set V =
{v1, . . . , vn}, a set function f : 2V → R is submodular if for
any X ⊆ Y ⊆ V and v ∈ V \ Y ,

f(X ∪ v)− f(X) ≥ f(Y ∪ v)− f(Y) (1)

or equivalently, for each X,Y ⊆ V

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) (2)

A well-studied class of problems aims to select a k-element
subset that maximizes a monotone submodular objective f
classified with respect to the cost function. The simplest subset

selection problem with cardinality constraint |X| ≤ k is NP -
hard [34]. The greedy algorithm, which iteratively selects one
element with the largest marginal gain, can achieve (1 − 1

e)-
approximation guarantee [22]. The best known guarantees are
1
κ (1−e−κ) due to [35], and (1− κ

e) due to [36] for a cardinality
constraint, where 0 ≤ κ ≤ 1 is called curvature [35] that
substantially characterizes how close a monotone submodular
function f is to the modularity. A generic function f is
modular if and only if κ = 0. A function f : 2N → R
is monotone modular (also called “additive” or “linear”) if
f(X) =

∑
j∈X w(j) for some w : N → R≥0.

For the class of problems aiming to select a subset that
maximizes a monotone submodular objective f under the cost
constraint C(X) ≤ B, where C is a linear function, the greedy
rule selecting the element with the largest marginal gain on f
leads to an unbounded approximation ratio [37]. Instead, the
generalized greedy rule that iteratively selects the element with
the largest ratio of the marginal gain on f and C, and outputs
the better of the found subset and the best single element
achieves 1

2 (1− 1
e)-approximation guarantee [38].

B. Reward and Cost Modularity

OASP aims to select a subset S of vertices V in A that
maximizes the reward under a constraint on the traveling cost
to reach X . To formalize OASP, recall that the orienteering
problem with a budget constraint can be stated as:

S = arg max
X⊆V

{R(X) | C(X) ≤ B} (3)

where R is the modular monotone reward function to maxi-
mize, C is the modular monotone cost function subject to the
constraint to be limited by B, the budget given as input.

Due to the specific structure of the aisle-graph A, given a
subset of vertices X , the cycle of minimum cost that visits all
the vertices in X traverses the subgraph TX of A containing
vs = v1,1 that consists of the vertices in X along with the
minimum set of vertices that make it a connected subgraph of
A (see, e.g., Figure 4). Such a subgraph is uniquely defined
because there is only one simple path from any two vertices
of A, i.e., TX is a tree.

vs

X

Fig. 4. The selected subset of vertices X ⊆ V (in blue) and the subgraph TX
that connects X (whole subgraph rooted in vs with double edges in blue).

Given X , the cycle of minimum cost to visit X starts from
v1,1, visits the vertices in TX scanning the rows of A in order
from the top to the bottom. Each row is visited back-and-forth
up to its furthest vertex in X . After visiting the last row imax

5

that has vertices in X , the cycle is completed by vertically
traversing the first column from vimax,1 to v1,1. The cost of
such a cycle is given by the sum of the costs of each traversed
edge multiplied by the number of times it is traversed, that is,
C(X) = 2(|TX | − 1).

v

imax = 4

v5,4

(a) C(X ∪ v5,4).

v

imax = 4

v3,4

(b) C(X ∪ v3,4).

v

imax = 4

v4,4

(c) C(X ∪ v4,4).
Fig. 5. Marginal cost C(X∪vi,j)−C(X) (in red) when the vertex v = vi,j
is added and imax = 4 with unitary costs: (a) i > imax with marginal cost
8; (b) i < imax with marginal cost 6, no vertex of row i belongs to S; (c)
i ≤ imax with marginal cost 2.

Consider for instance Figure 4. The cycle C(X) traverses,
in the order, row 1 back-and-forth up to vertex v1,4, row 2
back-and-forth up to vertex v2,3, vertex v3,1 in row 3, and
row 4 back-and-forth up to vertex v4,3. Finally, it returns to
v1,1 traversing back column 1. The cost of X in Figure 4 is
2(|TX | − 1) = 20 (precisely, 3 · 2 + 1 + 2 · 2 + 2 + 2 · 2 + 3).
Since TX is uniquely defined given X , for convenience, we
define, in Eq. (3), C(X) as the cost of visiting the tree TX ,
and the function R(X) as the sum of the rewards of all the
vertices v ∈ X . Note that R(TX) ≥ R(X) because X ⊆ TX .

It is very important to note that the marginal cost of R
and C, i.e., the cost for updating both R and C after the set
X is increased by one vertex, can be computed in constant
time. This is trivial for R, indeed R(X ∪v) = R(X)+R(v).
The increment of the cost of the C(X) when a new vertex is
added depends on the position of v with respect to X . The
possible scenarios are illustrated, for example, in Figure 5 and
the increment is depicted in red. Figure 5 illustrates how the
cost changes depending on the relative position of v = vi,j
with respect to the last line in the solution set S. It is easy

to compute the increment in constant time. Specifically, in
Figure 5a (case i > imax), the increment of cost considers
the vertical movements for reaching the new i-th row and
the horizontal movements for visiting vertices up to v; in
Figure 5b (case i < imax with no vertex of row i belongs
to S), the increment of cost only considers the full horizontal
movements for visiting vertices up to v; in Figure 5c (case
i ≤ imax), the increment of cost only considers the partial
horizontal movements for completing the visit of the i-th row
up to v. From the above considerations, Eq. (2) is satisfied
as equality from both R and C, and thus such functions are
modular.

IV. OPTIMAL SOLUTION FOR OASP
We devise a dynamic programming algorithm, called Opti-

mum Single Access (OPTSA), that optimally solves OASP in
polynomial time.

During the initialization, two tables T and R of size m×n
and m×(B2 +1), respectively, are created. Table R has columns
j = 0, 1, . . . , B2 . Instead, Table T is initialized as follows:
T [i, j] =

∑j
k=1R(vi,k) for each i, j which represents, fixed

a row i, the cumulative reward up to the j-th column starting
from the leftmost side, with 1 ≤ j ≤ n. Clearly, T [i, 1] = 0.
The initialization of table T has time and space cost O(mn)
since its size is m×n and the cells of each row can be filled in
constant time from left to write: T [i, j] = T [i, j−1]+R(vi,j).
The entry R[i, b] records the largest reward that can be attained
with budget 2b, where 0 ≤ b ≤ B

2 , visiting only the first i
rows. Finally, let Q[i, b] be the last column visited in row i to
obtain the reward R[i, b].

Some general properties will be exploited by our dynamic
programming solution:
• If B ≥ 2nm + 2(m − 1) then the robot can visit the

whole graph.
• Any optimal solution traverses the selected rows either in

increasing or decreasing order with respect to their row
indices.

• Any optimal solution visits each row at most once.
• For each row, the algorithm has to select the last vertex to

visit. If no vertex is visited, still vi,1 has to be traversed
to reach the subsequent row i+ 1.

The optimal solution that visits the first j vertices in row
i, with j ≥ 1, gains T [i, j] reward from row i, and spends 2j
budget to serve rows i starting from row i − 1. Namely, we
reserve 2 units of budget to change row and 2(j − 1) units
to traverse row i. We thus have the next recurrence. The first
row of table R is defined as follows:

R[1, b] =

{
T [1, b+ 1] 0 ≤ b ≤ n− 1

T [1, n] n ≤ b ≤ B
2

Note that for b = 0, T [1, 0] = R(v1,1) = 0. Then, for each
subsequent row R[i, b], i ≥ 2:

R[i,b]=

−∞ b<i−1

0 b= i−1

max
1≤j≤min{b−i+2,n−1}

{R[i−1, b−j]+T [i, j]} b>i−1

(4)

6

Note that j ≤ min{b−i+1, n−1} is obtained by observing
that j ≤ n− 1, b− (j− 1)− 1 ≥ 0 and more strictly b− (j−
1) − 1 ≥ i − 2 to have enough budget to reach row i − 1. If
b = i− 1 and i ≥ 2, R[i, b] is 0 because there is only enough
budget to reach row i traversing column 1.

Table Q is then filled recalling for each position the column
that has given the maximum reward, i.e., Q[i, b] ← j =
arg maxR[i, b]. Finally, the reward of the optimal solution
with budget B

2 is found by calculating max1≤i≤mR[i, B2]
because the furthest row reached by the optimal solution, is
not known in advance. Having fixed the last row, the solution
is computed in O(m) tracing back the choices using the table
Q. Note that with a single execution of OPTSA, the optimal
reward for any value b, with 0 ≤ b ≤ B

2 , is computed. That is,
the maximum reward for budget b is the maximum in column
b of table R.

The algorithm runs in time O(mnB2) plus O(m) to retrieve
the solution, and takes O(mn+mB

2) space. Since the maxi-
mum budget is B ≥ 2nm+2(m−1), i.e., B is upper bounded
by O(mn), then algorithm OPTSA is strictly polynomial in the
size of the input.

By the above discussion, the next theorem can be stated.

Theorem 1. Algorithm OPTSA optimally solves OASP in time
O(mnB2).

Proof. The running time is obvious. Let us define R(i, b) as
the optimal profit to reach any vertex of row i when the
budget is 2b. The solution Q(i, b) associated with R(i, b) has
maximum profit and must traverse the vertices v1,1, . . . , vi,1
of c1, i.e., the first column with no rewards.

For the correctness, we use induction. For the base case,
i = 1 and any b, or any row i and b ≤ i− 1, the correctness
follows from the above discussion.

Inductive Step: When computing R[i, b] by the induction
hypothesis, we have that R[i − 1, b − j] for any 1 ≤ j ≤
min{b − i + 2, n − 1} are already computed correctly. Since
any optimal solution Q[i, b] visits the rows in increasing index
order, traverses only once row i, up to any cj (recall that
j = 1 means that the row is not visited), and must traverse
the vertices v1,1, . . . , vi,1 of c1, Q[i, b] is built starting from
a sub-problem that traverses the vertices v1,1, . . . , vi−1,1 and
some vertices of row i. Then, Q[i, b] is based on a sub-problem
that considers up to row i−1, leaves 1 unit of budget to reach
row i, and leaves (j − 1) units of budget to reach vertex j in
row i, for some 1 ≤ j ≤ b− i. Hence, the value of R[i, b] in
Eq. (4) is correct.

Now, assume by contradiction, that there exists a solution
Q′[i, b] 6= Q[i, b] with cost R′[i, b] > R[i, b], and that is the
first time that Eq. (4) does not provide the optimum. Let vertex
vi,j be the vertex reached by Q′[i, b] in row i. The solution
Q′[i, b] gains T [i, j], and R′[i, b] − T [i, j] corresponds to the
profit of a sub problem Q[i−1, b−j] for which R[i−1, b−j]
is optimal. That is, R′[i, b]−T [i, j] = R[i− 1, b− j] and thus
R[i, b] = R[i− 1, b− j] + T [i, j] = R′[i, b].

Finally, since we do not know in advance the furthest row
that belongs to the optimal solution, the optimal solution
with budget B is found in column B

2 , and precisely it is
max1≤i≤mR[i, B2].

Example. For the example in Figure 3, assuming a budget
B = 16, the Table R is iteratively created from its first row.

R 0 1 2 3 4 5 6 7 8
1 0 3 4 8 9 9 9 9 9

Here, we assume to visit only the first row. Specifically,
R[1, 0] = 0 because with no budget there is no reward;
R[1, 1] = 3 because with a budget of 2 · 1 = 2, the
maximum obtainable reward is 3; R[1, 2] = 4 because with
a larger budget 2 · 2 = 4, it is possible to visit the third
column, and hence the cumulative reward is 3 + 1 = 4;
R[1, 3] = 8 because spending a budget of 2 · 3 = 6, the
cumulative reward is 3 + 1 + 4 = 8, and so on. Clearly,
R[1, 4] = . . . = R[1, 8] = 9 because the available budget
is sufficiently enough for completely visiting the first row as
a whole. The second row of table R is the following one.

R 0 1 2 3 4 5 6 7 8
2 −∞ 0 3 4 11 17 20 21 25

Assuming to visit also the second row, R[2, 0] = −∞
because, with no budget, there is no chance for computing
a cycle that visits any vertex in the second row and going
back to v1,1. R[2, 1] = 0 because with a budget of 2, it is
possible only to visit v2,1 and go back, without any reward
since the elements on the first column do not provide reward.
The first interesting value is R[2, 4] = 11, because with budget
8, forcing to visit the second row, it is possible to arrive up to
v2,4 which gives a cumulative reward of 1+1+9 = 11, which
is the maximum possible. Then, R[2, 7] = 21 because with
budget 14, visiting v1,2 with cumulative reward of 3 + 1 = 4,
and visiting v2,5 with cumulative reward 1 + 1 + 9 + 6 = 17,
the total reward is 4 + 17 = 21.

The same strategy, applying Eq. (4), permits to build the
final table R.

R 0 1 2 3 4 5 6 7 8
1 0 3 4 8 9 9 9 9 9
2 −∞ 0 3 4 11 17 20 21 25
3 −∞ −∞ 0 3 10 19 28 31 32
4 −∞ −∞ −∞ 0 3 10 19 28 31

The maximum achievable reward assuming to visit only the
first row is 9, i.e., full visit of the row because there is available
budget. In the case of considering also the second row, it is
not possible to do two full visits for both the first and second
rows, since the cost will be larger than the budget, hence the
maximum achievable reward is 25. The same could be done
up to the third row, i.e., maximum budget 32, and finally up
to the fourth, i.e., 31. It is easy to see that the optimal solution
visits only the first three rows obtaining a total reward of 32.

The optimal solution is extracted from table Q, which is:

Q 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 5 5 5 5
2 −∞ 1 1 1 4 5 5 5 5
3 −∞ −∞ 1 1 3 4 5 5 5
4 −∞ −∞ −∞ 1 1 1 1 1 1

7

The solution is extracted from the index in Q that has the
maximum reward in R, i.e., Q[3, 8] = 5, so v3,5 is visited.
Then, the farthest column to be visited from the previous row
is Q[3− 1, 8−Q[3, 8]] = Q[2, 3] = 1, i.e., up to v2,1. Finally,
the last column of row 1 to be visited is Q[2−1, 3−Q[2, 3]] =
Q[1, 2], i.e., up to v1,2. In conclusion, the optimal solution is:
S = {v1,1, v1,2, v1,3, v2,1, v3,1, v3,2, v3,3, v3,4, v3,5}.

V. PROPOSED GREEDY ALGORITHMS

In this section, we propose two basic greedy algorithms,
called Greedy Max Element (GDYME) and Greedy Max
Cumulative (GDYMC), for OASP; and two additional greedy
approximation algorithms, called Approximate Max Ratio
Element (APXMRE), and Approximate Max Ratio Cumulative
(APXMRC). We also compare the time and space complexity
of these algorithms with the optimal algorithm, Optimum
Single Access (OPTSA).

A. The GDYME Algorithm

The Greedy Max Element (GDYME) algorithm is a simple
greedy algorithm for OASP. The main idea behind it is to visit
the vertices in decreasing order of their rewards, i.e., vertex
vi,j with current largest reward is either added to the solution
set S, if it is reachable with the residual budget or discarded.
In addition to the vertex vi,j selected by the greedy strategy, at
each step, the robot collects on row i all the available rewards
from vi,1, . . . , vi,j . This is a simplification of the fact that at
some point all vertices passed through to reach vi,j would be
chosen by GDYME as they require no budget to be reached.
Hence, selected the vertex vi,j , the current solution set S adds
vi,j along with all the vertices vi,k with 1 ≤ k < j of the i-th
row. Recall that the reward of a vertex is collected only once
even if the robot passes through it several times.

Algorithm 1: GDYME (Graph A,Budget B)

1 S ← v1,1
2 R← BUILDMHEAP(R(vi,j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n
3 while C(S) ≤ B do
4 vi,j ← EXTRACTARGMAX(R)
5 if C(S ∪ vi,j) ≤ B then
6 S ← S ∪ vi,k, 1 ≤ k ≤ j
7 EXTRACTHEAP(vi,k), 1 ≤ k ≤ j

8 return R(S)

Algorithm 1 first initializes S with the home vertex v1,1,
whose reward is null by definition (Line 1) and subsequently
creates a max-heap R with rewards of all the vertices in V
(Line 2). This preprocessing takes O(mn) time.

Next, the main loop (Line 3) iteratively selects and extracts
from the heap structure R the root vi,j ∈ V (Line 4), and
verifies whether vi,j is reachable with respect to the available
budget or not (Line 5). Recalling that the minimum path to
visit a set of vertices of the aisle-graph A is unique, the cost
C(S ∪ vi,j) can be computed in constant time incrementally
from C(S) (see Figure 5).

As already pointed out, if adding vertex vi,j is feasible (from
Line 6), all the vertices vi,k, 1 ≤ k ≤ j, will be added to S.

Namely, adding these vertices does not require extra budget
because they are on the path to vi,j . At the end of the main
loop, the total reward R(S) is returned (Line 8) in O(|S|)
time.

The main loop (Line 3) is executed at most B2 times because
the addition of a new vertex to S requires at least 2 units of
budget. Since each item inserted in S is extracted from R, the
algorithm spends O(|S| log(mn)) time to handle R. Clearly
|S| is upper bounded by B. Moreover B can be obviously
considered as upper bounded by O(mn), since the minimum
budget that allows to visit the whole input aisle-graph is
2(mn + m). Any larger budget would lead to have a trivial
solution, i.e., a full visit. Hence, the total time complexity of
GDYME is O(mn + B + |S| log(mn)) = O(mn log(mn));
and its space complexity is O(mn).

Example. For the example in Figure 3 and a budget B = 16,
the first element greedly added to the solution set S is v2,4 with
value 9. Consequently, all the other elements from the 2-th row
are put in S. From v2,4 there is enough budget for visiting
other vertices, and in fact the next available vertex the with
largest reward is v3,4, with reward 9. Now, selecting v3,4, there
is no sufficient budget for visiting other vertices. Finally, the
solution is S = {v1,1, v2,1, v2,2, v2,3, v2,4, v3,1, v3,2, v3,3, v3,4}
with total reward 30.

B. The GDYMC Algorithm

The Greedy Max Cumulative (GDYMC) algorithm keeps
the same greedy strategy as GDYME, but selects the vertex
with the maximum cumulative reward. In the preprocessing
step, for each vertex vi,j , the algorithm initially sums up in a
matrix R the cumulative reward R[i, j] =

∑j
k=1R(vi,j), i.e.,

the sum of the rewards of all the vertices belonging to the
i-th row up to the j-th column. There is only one vertex with
maximum cumulative reward to be selected in each row, and
at the beginning, this vertex is vi,n because the cumulative
reward is a monotone function. During the execution of the
algorithm, the candidate vertices, one per each row, are stored
in a max-heap.

Algorithm 2: GDYMC (Graph A,Budget B)

1 S ← v1,1
2 R[i, j]←

∑j
k=1R(vi,k), 1 ≤ i ≤ m, 1 ≤ j ≤ n

3 M ← BUILDHEAP(R[i, n]), 1 ≤ i ≤ m
4 while C(S) ≤ B do
5 vi,j ← EXTRACTARGMAX(M)
6 if C(Sv1,1 ∪ vi,j) ≤ B then
7 S ← S ∪1≤k≤j vi,k

8 else
9 INSERTHEAP(M,R[i, j − 1])

10 return R(S)

Algorithm 2 sets the initial solution S = {v1,1} (Line 1),
and computes the cumulative rewards row by row (Line 2).
Then, a max-heap M is built (Line 3) using the largest
cumulative rewards of each row, i.e., R[i, n], for 1 ≤ i ≤ m.
This preprocessing phase takes O(mn) in time and space.

8

The main greedy loop iterates until the solution exhausts the
budget for the robot (Line 4). At each step, the vertex vi,j ∈ V
with the largest value R[i, j] in M (Line 5) is selected. If there
is enough budget to visit such a vertex, vi,j is added to the
current solution S along with all the vertices on its left side
(Line 7) on row i. Note that no other vertices in row i can
be inserted later and the size of M is decreased by one. If
the budget condition (Line 6) is not satisfied, it implies that
there is not enough budget to include vi,j in S, and hence vi,j
is discarded. In this case, notice that not even the elements
on the right of j can be reached. Thus, the remaining largest
cumulative reward R[i, j − 1] in row i, which is associated
with vertex vi,j−1 on the left of the vertex just discarded, is
inserted into M (Line 9).

When the budget is exhausted, the total reward R(S) is
returned (Line 10).

The main loop (Line 3) is executed at most B
2 times. The

cost for extracting the maximum element of a heap or inserting
a new element into a heap of size m is O(log(m)), and the
time for updating S and computing R(S) is bounded by the
size of S which is O(B). Thus, the total time complexity is
O(mn+B log(m)) and space complexity is O(mn+m).

Example. For the example in Figure 3 and a budget B =
16, the vertex with the largest cumulative reward within the
available budget is v3,5 with an overall cumulative 28. Then,
the next vertex is v1,3 with overall value of 4. After that, no
any other vertex can be chosen and the total obtained reward is
32 and S = {v1,1, v1,2, v1,3, v3,1, v3,2, v3,3, v3,4, v3,5}. In this
case, GDYMC returns the optimal reward.

C. The APXMRE Algorithm

The Approximate Max Ratio Element (APXMRE) algo-
rithm selects, at each step, the feasible vertex that maximizes
the ratio between its reward and the cost (budget) to add the
selected vertex to the current greedy solution. In addition to the
greedy solution, APXMRE also builds a second solution that
contains the item with the maximum reward reachable with
the budget B. The algorithm returns the maximum between
the two solutions. We will prove in Section VI that APXMRE
guarantees an approximation ratio of 1

2 (1− 1
e).

Algorithm 3 initializes two solutions S1 and S2, and rmax

which stores the maximum current reward (Line 1). Here S1 is
built in the preprocessing phase by checking if there is enough
budget to reach each vertex from the home v1,1 and go back.
To compute S2, a two-dimensional matrix H of pointers is
constructed (Line 2). Each pointer H[i, d] points to a vector
of length n. In the preprocessing phase (Line 3), the vectors
pointed by H[i, d], for 1 ≤ i ≤ m and 0 ≤ d ≤ i, are
initialized. In Line 6, the vector of n positions pointed by
H[i, d] stores in position j, for 1 ≤ j ≤ n, the ratio between
the reward R(vi,j) and the length 2(j − 1) + 2d of the cycle
from vertex vi−d,1 to vi,j . Such a cycle consists of a vertical
subpath of length d and a horizontal subpath of length j − 1.

In other words, the vector pointed by H[i, d] stores the cost
of reaching the vertices in row i when the farthest row already
visited is row imax = i − d. In this case, to reach a vertex
of row i we have to consider extra d vertical steps. While

Algorithm 3: APXMRE (Graph A,Budget B)

1 S1 ← ∅, rmax ← −∞, S2 ← v1,1
2 H ← [i, d][j], 1 ≤ i ≤ m, 0 ≤ d ≤ i− 1, 1 ≤ j ≤ n
3 for i← 1,m do
4 for d← 0, i− 1 do
5 for j ← 1, n do
6 H[i, d][j]← R(vi,j)

2(j−1)+2d

7 if 2(j − 1) + 2d ≤ B then
8 if R(vi,j) > rmax then
9 rmax ←R(vi,j)

10 S1 ← vi,j

11 imax ← 1
12 while C(S2) ≤ B do
13 M ← [i], 1 ≤ i ≤ m
14 for i← 1,m do
15 if i ≤ imax then
16 M [i]← MAX(H[i, 0])

17 else
18 M [i]← MAX(H[i, i− imax])

19 vi,j ← ARGMAX(M)
20 if C(S2 ∪ vi,j) ≤ B then
21 S2 ← S2 ∪1≤k≤j vi,k
22 for k ← j + 1, n do
23 H[i, 0][k]← R(vi,j)

2(j−k)

24 imax ← MAX(i, imax)

25 return max{R(S1),R(S2)}

S2 grows, the farthest row in S2 increases and the cost for
reaching the vertices of row i changes (see Figure 5). The
ascending order of the ratios (and in particular the maximum)
is however not preserved when the traveling cost (i.e., the ratio
denominator) changes due to the change of the last row imax
of the solution. Therefore, for each row i, 1 ≤ i ≤ m, we
precompute the ratios considering all the possible distances
H[i, d], 0 ≤ i ≤ d. This preprocessing phase takes O(m2n)
in time and space.

After the preprocessing procedure (loop Line 3), the current
furthest visited row imax (Line 11) is set to 1 and the main loop
starts (Line 12). A vector M of length m is created (Line 13)
using for each row the root of H[i, i − 1]. Then vertex vi,j
in M with the largest ratio is greedily chosen (Line 19) and
inserted in S2 if feasible. The current solution set S2 is updated
including the vertices in row i on the left of vi,j (Line 21).
Moreover, for any vertex in row i on the right of the selected
vertex, i.e., vi,k for j + 1 ≤ k ≤ n, the ratios are updated
in H[i, 0] (Line 23). This is because S2 already reached the
vertex vi,j in row i, and only a small horizontal distance has to
be traversed to reach any remaining vertex in row i. Finally, the
value of the maximum visited row imax is updated (Line 24).

Before proceeding to the next vertex selection, for each
vertex vi,j we reason about the budget to be spent for the
vertical movements. Indeed, if i ≤ imax (Line 16), given
the solution S2 already reaches i, the actual ratios for row
i are pointed by H[i, 0] which considers only the horizontal
distances to reach vertices vi,j (Line 18). If i > imax, some
budget for the vertical steps has to be spent since row i has

9

never been reached. Hence, the actual ratios for row i are
pointed by H[i, i − imax] which considers i − imax vertical
distance. In practice, since the last row in S2 varies, we change
the costs of reaching the vertices, as explained in Figure 5.

At the very end, the algorithm returns the best solution
between subsets S1 and S2 (Line 25).

The main cycle (Line 12) is executed at most B
2 times, re-

sulting in O(B(m+n)) time because the cycle (Line 14) costs
only O(m) time. Thus the overall time and space complexity
are O(m2n+B(m+ n)) and O(m2n), respectively.

Example. For the example in Figure 3 and a budget B = 16,
the vertex with the largest ratio between its reward and its
cost for adding it at the solution set S is v1,2 with ratio
1.5 (i.e., reward 3 and cost 2). The next vertex selected
is v2,4 with ratio 9/8 = 1.125. The cost is 8 because in
the current solution there are only vertices belonging to the
first row, so the costs for exploring the second row take
into account two more vertical units. Now, the new vertex
to add is v2,5 with ratio 6/2 = 3. This is due to the fact
that 6 is its reward, but only 2 is the additional cost for
visiting it, since v2,4 already belongs to S. The next possible
vertex is v1,4, and hence the solution has total reward 25 and
S = {v1,1, v1,2, v1,3, v1,4, v2,1, v2,2, v2,3, v2,4, v2,5}.

D. The APXMRC Algorithm

The Approximate Max Ratio Cumulative (APXMRC) al-
gorithm is a greedy strategy that runs similar to APXMRE
algorithm. The only difference in the greedy rule is that the
subvectors (Algorithm 3, Line 6) consider, at the numerator,
the cumulative reward instead of the single vertex reward, i.e.,

H[i, d][j]←
∑j
k=1R(vi,k)

2(j − 1) + 2d
.

Accordingly, APXMRC has the same time and space com-
plexity as APXMRE.

Example. For the example in Figure 3 and a budget B =
16, the selected vertex with the maximum ratio between the
cumulative reward and the cost for reaching it is v3,5 with
ratio 28/12 = 2.333. Then, the next one is v1,2 with ratio
3/2 = 1.5. Finally, the next one is v1,3 with ratio 1/2 = 0.5.
This is due to the fact the solution already had included the
vertex v1,2. In conclusion, the solution has total reward 32 and
S = {v1,1, v1,2, v1,3, v3,1, v3,2, v3,3, v3,4, v3,5}. In this case,
APXMRE returns the optimal reward.

Comparison of Algorithms

In Table I we summarize the time and space com-
plexity of all the algorithms we presented, distinguishing
between the time complexity of the preprocessing phase
and the main algorithm phase. Recalling that B is upper
bounded by O(mn), when B = Θ(mn), OPTSA requires
O(max{m,n}4). Thus, all our non-optimal algorithms are
faster than OPTSA, even including the preprocessing time.
The most expensive greedy algorithms are APXMRE and
APXMRC requiring O(max{m,n}3) operations. The time
complexity of APXMRE and APXMRC is dominated by the

preprocessing time which is larger than that of OPTSA. Algo-
rithms GDYME and GDYMC are always faster than OPTSA,
requiring O(max{m,n}2 logm) time, but they slightly lose in
reward-performance. In terms of space, GDYME and GDYMC
are more efficient than OPTSA which requires the same space
as APXMRE and APXMRC.

TABLE I
COMPARISON BETWEEN THE ALGORITHMS.

Algorithm Time complexity Space complexityPreprocessing Main
OPTSA O(mn) O(Bmn) O(mn+Bm)

GDYME O(mn) O(B log(mn)) O(mn)
GDYMC O(mn) O(B log(m)) O(mn+m)

APXMRE O(m2n) O(B(m+ n)) O(m2n)
APXMRC O(m2n) O(B(m+ n)) O(m2n)

VI. GUARANTEED BOUND FOR APPROXIMATION RATIO

In this section, we analyze the performance guarantee of our
approximation algorithms. Specifically, we initially highlight
how the selected element by the greedy step improves the
objective function in Lemma 1, then we show how the
partial greedy solution is bounded with respect to the optimal
solution in Lemma 2, and finally we prove the guaranteed
approximation bound of algorithms APXMRE and APXMRC
exploiting the two aforementioned Lemmas in Theorem 1.

Let Gi be the solution obtained from APXMRE at step i.
Moreover, at each iteration i, APXMRE adds to the solution
set Gi−1 the element xi that maximizes the ratio between the
marginal gain and the marginal cost of adding such an element
(see Algorithm 3, Line 19). That is,

xi = arg max
vi,j∈V

R(Gi−1 ∪ vi,j)−R(Gi−1)

C(Gi−1 ∪ vi,j)− C(Gi−1)
(5)

For our problem R(Gi−1 ∪ vi,j) − R(Gi−1) = R(xi), due
to the modularity property. In Lemma 1 we prove that the
inclusion of the element selected by the greedy step (Eq. (5))
improves the objective function by at least a quantity propor-
tional to the current distance to the optimum. Namely, we are
able to bound the improvement of the greedy step from below
the improvement on the objective function. Let the solution
G`+1 from APXMRE the first iteration when it violates the
budget constraint and stops.

Lemma 1. For any i = 1, . . . , `+ 1, it holds that

R(Gi)−R(Gi−1) ≥ R(OPT)−R(Gi−1)

B
(C(Gi)−C(Gi−1)),

where OPT is the optimal solution considering budget B.

Proof. Suppose OPT is the optimal solution considering bud-
get B. For any i = 1, . . . , `+ 1 we have

R(OPT)−R(Gi−1) ≤ R(OPT ∪Gi−1)−R(Gi−1)

= R(OPT \Gi−1 ∪Gi−1)−R(Gi−1).

Assume OPT \ Gi−1 = {y1, . . . , ym}, where yi are vertices
in OPT but not in solution Gi−1. Let us now define for any

10

j = 1, . . . ,m the marginal reward for any element yj as Zj =
R(Gi−1 ∪ {y1, . . . , yj})−R(Gi−1 ∪ {y1, . . . , yj−1}). Thus,

R(OPT)−R(Gi−1) ≤ R(OPT\Gi−1∪Gi−1)−R(Gi−1) =

R(Gi−1 ∪ {y1, . . . , ym})−R(Gi−1) =

R(Gi−1 ∪ {y1, . . . , ym})−R(Gi−1 ∪ {y1, . . . , ym−1})+
R(Gi−1 ∪ {y1, . . . , ym−1})−

R(Gi−1 ∪ {y1, . . . , ym−2}) + . . .−R(Gi−1) =

m∑
j=1

Zj .

Notice that, for any j,

Zj
C(Gi−1 ∪ yj)− C(Gi−1)

≤ R(Gi−1 ∪ yj)−R(Gi−1)

C(Gi−1 ∪ yj)− C(Gi−1)

≤ R(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)
(6)

where the first inequality holds due to the modularity of R
(precisely, Eq. (1) where Y = Gi−1 ∪ {y1, . . . , yj} and X =
Gi−1 ∪ yj and X ⊆ Y) and the second inequality holds due
to the greedy rule, according to Eq. (5). Therefore,

R(OPT)−R(Gi−1) ≤
m∑
j=1

Zj

≤ R(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)

m∑
j=1

C(Gi−1 ∪ yj)− C(Gi−1)

≤ R(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)

∑
y∈OPT

C(y).

Since function c can be computed in polynomial time, we
can bound the sum of the costs over all the elements with the
cost of the optimal solution that at its turn cannot exceed B.
Hence,

R(OPT)−R(Gi−1) ≤ R(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)

∑
y∈OPT

C(y)

≤ C(OPT)
R(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)
≤ BR(Gi)−R(Gi−1)

C(Gi)− C(Gi−1)
.

In the following, Lemma 2 proves that the solution of the
greedy algorithm at each iteration can be bounded with respect
to the optimal solution.

Lemma 2. For any i = 1, . . . , `+ 1 it holds that

R(Gi) ≥

[
1−

i∏
k=1

(
1− C(Gk)− C(Gk−1)

B

)]
R(OPT),

where OPT is the optimal solution considering budget B.

Proof. For i = 1, the proof follows directly from Lemma 1
since G0 = ∅, R(G0) = 0 and C(G0) = 0. For i > 1, using

Lemma 1 and inductive hypothesis on R(Gi−1), it holds:

R(Gi) = R(Gi−1)−R(Gi−1) +R(Gi)

≥ R(Gi−1) +
C(Gi)− C(Gi−1)

B
(R(OPT)−R(Gi−1))

=

(
1− C(Gi)− C(Gi−1)

B

)
R(Gi−1)+

C(Gi)− C(Gi−1)

B
R(OPT)

≥
(

1− C(Gi)− C(Gi−1)

B

)
·[

1−
i−1∏
k=1

(
1− C(Gk)− C(Gk−1)

B

)]
R(OPT)+

C(Gi)− C(Gi−1)

B
R(OPT)

=

(
1−

i∏
k=1

(
1− C(Gk)− C(Gk−1)

B

))
R(OPT).

Finally, exploiting Lemma 2, we prove that APXMRE
provides a constant approximation ratio.

Theorem 2. Algorithm APXMRE guarantees a 1
2

(
1− 1

e

)
approximation ratio for OASP.

Proof. By applying Lemma 2, by the fact that C(G`+1) >
B (since it violates the constraint), and recalling that for
a1, . . . , an ∈ R such that

∑n
i=1 ai = A, the function (1 −

Πn
i=1(1− ai

A)) achieves its minimum at a1 = . . . = an = A
n ,

we have:

R(G`+1) ≥

[
1−

`+1∏
k=1

(
1− C(Gk)− C(Gk−1)

B

)]
R(OPT)

≥

[
1−

`+1∏
k=1

(
1− C(Gk)− C(Gk−1)

C(G`+1)

)]
R(OPT)

≥

[
1−

(
1− 1

(`+ 1)

)`+1
]
R(OPT) ≥

(
1− 1

e

)
R(OPT).

Since r is a modular function we know that the marginal
gain selecting element x`+1 at step ` + 1 is less than or
equal to the gain given by a solution that contains the
element with maximum gain, i.e., R(G`+1) − R(G`) =
R(x`+1) ≤ R(x∗), where R(x`+1) is the marginal gain
obtained adding the (`+ 1)-th vertex selected by greedy rule
and x∗ = arg maxx∈V :C(x)≤BR(x), (i.e., x∗ is the vertex with
the maximum reward reachable with budget B), it follows:

R(G`) +R(x∗) ≥ R(G`+1) ≥
(

1− 1

e

)
R(OPT), and

max{R(G`),R(x∗)} ≥ 1

2

(
1− 1

e

)
R(OPT).

In Algorithm 3, x∗ = S1 and R(S1) = R(x∗). Moreover,
R(S2) ≥ R(G`) because S2 contains not only the vertex
selected by the greedy rule {x1, . . . , x`}, but also the vertices
on its left on the same row (see Algorithm 3, Line 21).

It is worth mentioning that the same approximation ratio
also holds for APXMRC. Lemma 1 holds even when the

11

greedy algorithm picks a subset of vertices in a row. APXMRC
considers the cumulative reward of a partial row, that is not
already in the solution, up to the vertex in consideration. The
cumulative reward R(Gi ∪ yj) for any j is greater than or
equal to that obtained by picking only the last element yj ,
whereas the cost C(Gi ∪ yj) remains the same since the cost
for visiting only the last element yj or all the elements up
to yj , does not change. Therefore, the second inequality in
Eq. (6) of Lemma 1 remains true even if Gi \Gi−1 is a subset
of vertices in a row of the graph. So, repeating the reasoning of
Lemma 2 and Theorem 2, we prove that algorithm APXMRC
guarantees the same approximation ratio as APXMRE.

VII. PERFORMANCE EVALUATION

We evaluate the performance of the new algorithms
{GDYME,GDYMC,APXMRE,APXMRC}, and compare
them with the optimal algorithm OPTSA. For each scenario,
each algorithm is tested with an increasing budget
B = 2n, . . . , 2(mn + m), and we plot the average of
the results on 30 instances (10 in the case of real data) along
with their 95% confidence interval. Specifically, in Figures 7
and 8, organized in paired plots, we report:
• on the left plot of each pair, the collected reward R in

percentage (100% means all the available rewards have
been collected), with respect to the used budget B in
percentage (100% means B = 2(mn+m));

• on the right plot of each pair, the ratio ρ = R(ALG)
R(OPTSA)

between the reward of ALG = {GDYME, GDYMC,
APXMRE, APXMRC } and the reward of OPTSA. Recall
OPTSA optimally solves OASP.

(a) θ = 0. (b) θ = 0.9. (c) θ = 1.8. (d) θ = 2.7. (e) Real.

0 100

(f) Legend.

Fig. 6. Reward maps for synthetic (a)–(d), and real (e) graph instances.
Synthetic graphs are A(100, 50) while real graph is A(274, 214). The
heat-maps, rendered after a bilinear interpolation using matplotlib software,
highlight the areas with large and small rewards with hot and cold colors,
respectively (see legend (f)). Synthetic data are randomly generated, while real
data are taken from real observations [39]. In particular, real moisture levels
are then converted in actual rewards through a suitable interpolation [40].

A. On Synthetic Data

In this section, we evaluate the performance of the presented
algorithms on generated synthetic data. We assume the rewards
are properly randomized following the Zipf distribution [41],
which is characterized by a single parameter θ that rules
the occurrences of the reward values. In our evaluations, the
rewards are integers in the interval [0, 100). When θ = 0,

the rewards are uniformly distributed in [0, 100), while when
θ increases, the smallest rewards become more and more
frequent than the largest ones. In our setting, we assume
θ = {0, 0.9, 1.8, 2.7}.

Examples of random reward maps are illustrated in Fig-
ures 6a–6d, where the hot and cold colors represent high and
low rewards, respectively. In our applications mentioned at the
beginning, a hot color represents a place where the robot has to
operate on a plant or pick an item from the shelves with a high
reward (high priority), while a cold color represents a location
with a low reward (low priority). When θ = 0 (Figure 6a), the
heat map illustrates rewards uniformly distributed, while when
θ = 1.8 (Figure 6c), the heat map features highly unbalanced
rewards, with very dispersed positions with high reward. In
our experiments, we finally vary the size of the aisle-graphs
considering two different layouts: more rows than columns
(m > n, A(100, 50)) and more columns than rows (n > m,
A(50, 100)).

For each A and θ, we run the five algorithms. Fixing m, n,
and θ, we generate 30 different reward distributions and solve
them with each algorithm. For each random distribution, each
algorithm is tested with an increasing budget. Since the overall
reward is randomly generated and differs for each graph, we
return the reward gained as a percentage of the overall reward
of each graph. Finally, we plot the average of the results along
with their 95% confidence interval.

Figure 7 compares the reward collected by the different
algorithms for several values of θ. When θ = 0, the percentage
of the collected reward almost increases linearly with the
budget; this is reasonable since the rewards are uniformly
distributed, and so also the gain for unit of cost is uniformly
distributed. There are no subareas of the map that are more
important to visit because their reward per unit is larger.

When θ ≥ 1.9, there are instead localized subareas with
higher rewards. In such cases, the robot prioritizes those areas
(hot areas of the heat maps) and collects a high percentage
of reward (up to 60% when θ = 1.9 and up to 80% when
θ = 2.7) already with a small budget B ≈ 20%. Up to B ≈
60%, the value of θ makes the difference in the percentage
of the collected reward. With B ≈ 80%, instead, θ does not
meaningfully impact the reward. This means that when B ≥
80%, there is enough budget to cover the most meaningful
part of the map in any case, and it is not important to first
select the more promising paths.

When θ ≤ 0.8, the collected reward highly depends on
the algorithms for any value of B ≤ 60%, showing that the
strategy followed by the algorithms is important. In principle,
there are no paths that are definitely more promising than
others and it is difficult to decide which one is best. When
m > n, the large number m of rows makes the decision even
harder. Finally, all the algorithms report more or less the same
rewards (all the curves are near to each other), independently
of the θ value when B ≥ 80%. In this case, the larger budget
balances the algorithm cleverness.

To confirm that the problem difficulty increases with the
value of m, observe that the best performing Algorithm
APXMRC performs better when m < n than when m > n.
The collected reward by APXMRC (solid red line) almost

12

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)
OptSa GdyME GdyMC ApxMRE ApxMRC

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(a) A(100, 50), θ = 0.
0 20 40 60 80 100

0

20

40

60

80

100

B(%)

R
(%

)

OptSa GdyME GdyMC ApxMRE ApxMRC

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(b) A(50, 100), θ = 0.

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(c) A(100, 50), θ = 0.8.
0 20 40 60 80 100

0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(d) A(50, 100), θ = 0.8.

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(e) A(100, 50), θ = 1.9.
0 20 40 60 80 100

0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(f) A(50, 100), θ = 1.9.

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(g) A(100, 50), θ = 2.7.
0 20 40 60 80 100

0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)
ρ

(h) A(50, 100), θ = 2.7.

Fig. 7. Performance comparison of the proposed GDYME, GDYMC, APXMRE, APXMRC, and OPTSA algorithms.

coincides with that of the optimal Algorithm OPTSA (solid
black line) for the scenarios with m < n. In fact, the ratio
ρ = R(APXMRC)

R(OPTSA) → 1 when m < n for any value of θ (e.g.,
Figure 7b), while when m > n the ratio ρ → 1 only for
higher values of θ (e.g., Figure 7g). When θ is small and m
is large, APXMRC does not find the optimal solution, which
instead is computed by OPTSA. Note that APXMRC always
outperforms APXMRE (dashed red line). The ratio between
APXMRE and OPTSA is well above 0.9 (but below the ratio
of APXMRC) when B ≥ 40%, and around 0.8 otherwise.
This is because APXMRE greedily adds the best vertex vi,j
having the maximum ratio between its reward and the cost
for reaching it, without including the reward of the vertices
it passes through in its selection criterion. Instead, APXMRC
considers also the reward of such vertices for the selection
criterion. Similarly, the reward collected from GDYMC (solid
blue line) is greater than that of GDYME (dashed blue line).
In all plots, the ratio ρ between GDYMC and OPTSA is above
0.9. Instead, the ratio between GDYME and OPTSA increases
with B from 0.7 to 0.9, and more. When B is small, GDYME

performs much worse than GDYMC because it can spend a lot
of budget to cover isolated high reward items. When B ≥ 80%
and m < n, GDYME outperforms GDYMC probably because
the single reward becomes the most important selection crite-
rion to distinguish among important and less important items.

In almost all the plots, up to B = 40%, GDYMC out-
performs APXMRE, that is, the cumulative reward beats the
criteria that consider the cost. It seems that GDYMC gives
the precedence to the cluster of items with high reward
independently of how far they are, while APXMRE can
prefer the closest item even if is has small reward. Namely,
a small cost at the denominator of the selection criterion
amplifies minimal rewards at the numerator for APXMRE.
This behavior of GDYMC is particularly important because
GDYMC is computationally more efficient in time and space
than APXMRE and APXMRC. So when the budget is limited
and the computational efficiency matters, GDYMC is the best
algorithm to use.

Lastly, it can be experimentally seen that the reward
achieved by APXMRE and APXMRC is much larger than the

13

guaranteed reward. In our experiments, both APXMRE and
APXMRC collect more than 90% of the optimum reward,
i.e., the ratio ρ ≥ 0.9, while the guaranteed approximation
ratio proved in Section VI is ≈ 0.32.

B. On Real Data
To further asses the effectiveness of the proposed algo-

rithms, in this section we evaluate their performance on a set
of instances coming from real data in a vineyard irrigation
scenario. These data sets were obtained from a large scale
commercial vineyard located in central California [39]. The
section we consider has 274 rows and 214 columns (i.e., aisle-
graph A(274, 214)), resulting in approximately 60, 000 vines
in the aisle-graph. For each (internal) vertex v ∈ V , the reward
is set to R(v) = |T −m(v)|, where T is a constant indicating
the desired soil moisture in the vineyard (provided by a human
expert), and m(v) is the soil moisture at vertex v. This reward
is the difference between desired moisture and actual moisture,
thus revealing how underwatered or overwatered a vine is.
Due to the large size of the ranch, soil moisture values were
manually sampled at discrete locations using a probe equipped
with a GPS. From the finite set of samples, a soil moisture map
for the whole block was obtained using the Kriging algorithm
for interpolation [40].

Figure 6e shows one of the soil moisture maps used in our
experiments on real data. In particular, data were collected
every two weeks from this vineyard and used to produce ten
soil moisture maps. These maps (e.g., Figure 6e) were then
used to test the proposed algorithms, and the results were
averaged across each reward map. For reasons of similarity
with the synthetic data, we have also tested our results on
the transposed soil moisture maps of size 214 rows and 274
columns (i.e., aisle-graph A(214, 274)) with m < n. This is
reasonable since the structure of the constrained aisle graph
and the soil moisture are independent of each other.

For each of the ten scenarios, we run GDYME, GDYMC,
APXMRE, APXMRC, and OPTSA, with an increasing budget.
Finally, we plot the average of the results along with their
confidence interval.

Figure 8 compares the reward for different algorithms on
the real ten soil moisture maps. The plots in Figure 8 on the
left matches the trend already seen in the plots in Figure 7
(synthetic data) when θ = 0.8 because the collected reward
R when B = 20% is slightly above 20%, when B = 40%
is above 60%, and B = 80% is slightly above 80%. This is
not surprising because in the literature Zipf distributions with
parameter θ = 0.8 model several real distributions.

In the right plots of Figure 8, the most interesting difference
between the synthetic and the real data happens for algorithm
GDYME (dashed blue line)and GDYMC (solid blue line).
In the synthetic data, GDYMC outperforms GDYME; while
in real data, GDYMC and GDYME perform the same. This
means that GDYME, which takes into account for selection
only the single maximum reward but adds the rewards of all
traversed vertices, performs the same selection as GDYMC,
which takes into account for selection the cumulative reward.
In this case it appears that the cumulative reward is dominated
by the largest reward.

The ratio between APXMRC and OPTSA tends to 1 already
when B = 20% for both cases m > n and m < n. The
performance of the case m < n is more similar to that of the
case m > n in the real scenario than in the synthetic one. This
is arguably due to the fact that m and n are much closer in
relative magnitude, i.e., 274

214 = 1.28, than 100 and 50 whose
ratio is 100

50 = 2. The APXMRE algorithm poorly performs
when B ≤ 40%, as it happens for the synthetic data only
when m > n. In contrast, when m < n, APXMRE is always
above GDYMC, which is the same as GDYME. This can be
explained imagining the transpose of Figure 6e: all the rows
look quite similar among them and so it is more profitable to
collect the reward from the closest rows. In conclusion, the
performance of the proposed algorithms on the real scenario
is well above the performance guaranteed for every percentage
of B.

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

OptSa GdyME GdyMC ApxMRE ApxMRC

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(a) A(274, 214).

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

20 40 60 80 100
0.7

0.8

0.9

1

B(%)

ρ

(b) A(214, 274).

Fig. 8. Performance comparison of the proposed algorithms on real graphs.

VIII. CONCLUSIONS

In this paper, we focused on OASP, a route planning prob-
lem in constrained aisle-graphs with single access subject to a
given budget, and aiming to maximize an assigned reward. We
first proposed a polynomial-time algorithm to optimally solve
OASP. This solution, although optimal, has a computational
cost that can become problematic when the size of the aisle-
graph grows. Thus, we proposed four simpler and faster greedy
algorithms with reduced computational cost in time and space.
For two of them, we exploit submodularity properties and
achieve a provably guaranteed approximation ratio of 1

2 (1− 1
e).

Finally, we extensively evaluated the new four algorithms with
respect to the optimal solution on synthetic and real data. As
future work, it would be worth to apply similar approaches to
different topologies for the input graph. Different applications
as well as different robot capabilities may lead to interesting
scenarios. We also extend our investigation to the case where
swarms of robots can jointly accomplish tasks.

14

REFERENCES

[1] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Routing
algorithms for robot assisted precision irrigation,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 2221–2228.

[2] J. Xiong, Z. Liu, R. Lin, R. Bu, Z. He, Z. Yang, and C. Liang, “Green
grape detection and picking-point calculation in a night-time natural
environment using a charge-coupled device (ccd) vision sensor with
artificial illumination,” Sensors, vol. 18, no. 4, p. 969, 2018.

[3] T. Botterill, S. Paulin, R. Green, S. Williams, J. Lin, V. Saxton, S. Mills,
X. Chen, and S. Corbett-Davies, “A robot system for pruning grape
vines,” Journal of Field Robotics, vol. 34, no. 6, pp. 1100–1122, 2017.

[4] Mecalux, Conventional pallet racking, 2021,
https://www.mecalux.com/pallet-racks/conventional-pallet-racking.

[5] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987.

[6] F. Betti Sorbelli, S. Carpin, F. Corò, A. Navarra, and C. M. Pinotti,
“Optimal routing schedules for robots operating in aisle-structures,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 4927–4933.

[7] F. Betti Sorbelli, F. Coro, S. K. Das, A. Navarra, and C. M. Pinotti,
“Speeding-up routing schedules on aisle-graphs,” in 2020 16th In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, 2020, pp. 69–76.

[8] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “New approximation
guarantees for minimum-weight k-trees and prize-collecting salesmen,”
SIAM Journal on computing, vol. 28, no. 1, pp. 254–262, 1998.

[9] B. Aghezzaf and H. E. Fahim, “Iterated local search algorithm for
solving the orienteering problem with soft time windows,” SpringerPlus,
vol. 5, no. 1, p. 1781, 2016.

[10] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” SIAM Journal on Comp., vol. 37, no. 2, pp. 653–670, 2007.

[11] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,”
European Journal of Op. Res., vol. 255, no. 2, pp. 315–332, 2016.

[12] M. Fischetti, J. J. S. Gonzalez, and P. Toth, “Solving the orienteering
problem through branch-and-cut,” INFORMS Journal on Computing,
vol. 10, no. 2, pp. 133–148, 1998.

[13] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” in 44th Annual IEEE Symposium on Foundations of Com-
puter Science, 2003. Proceedings., 2003, pp. 46–55.

[14] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orien-
teering and related problems,” ACM Transactions on Algorithms, vol. 8,
no. 3, Jul. 2012.

[15] K. Chen and S. Har-Peled, “The orienteering problem in the plane
revisited,” in Proceedings of the Twenty-Second Annual Symposium on
Computational Geometry, 2006, p. 247–254.

[16] T. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” IEEE Transactions
on Automation Science and Engineering, vol. 17, no. 3, pp. 1184–1194,
2020.

[17] M. Mann, B. Zion, D. Rubinstein, R. Linker, and I. Shmulevich, “The
orienteering problem with time windows applied to robotic melon
harvesting,” Journal of Optimization Theory and Applications, vol. 168,
no. 1, pp. 246–267, 2016.

[18] D. Thakur, M. Likhachev, J. Keller, V. Dobrokhodov, K. Jones, J. Wurz,
and I. Kaminer, “Planning for opportunistic surveillance with multiple
robots,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems., 11 2013, pp. 5750–5757.

[19] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and
its application to persistent monitoring tasks,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1106–1118, 2016.

[20] G. Best and G. A. Hollinger, “Decentralised self-organising maps for the
online orienteering problem with neighbourhoods,” in 2019 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2019, pp.
139–141.

[21] S. Jorgensen, R. H. Chen, M. B. Milam, and M. Pavone, “The team
surviving orienteers problem: routing teams of robots in uncertain
environments with survival constraints,” Autonomous Robots, vol. 42,
no. 4, pp. 927–952, 2018.

[22] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions-I,” Mathematical
programming, vol. 14, no. 1, pp. 265–294, 1978.

[23] S. Jorgensen, R. H. Chen, M. B. Milam, and M. Pavone, “The matroid
team surviving orienteers problem: Constrained routing of heterogeneous
teams with risky traversal,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 5622–5629.

[24] W. Xu, Z. Xu, J. Peng, W. Liang, T. Liu, X. Jia, and S. K. Das,
“Approximation algorithms for the team orienteering problem,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 1389–1398.

[25] W. Xu, W. Liang, Z. Xu, J. Peng, D. Peng, T. Liu, X. Jia, and S. K.
Das, “Approximation algorithms for the generalized team orienteering
problem and its application,” IEEE/ACM Transactions on Networking
(to appear), 2020.

[26] M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor, P. Han-
rahan, and N. Joshi, “Submodular trajectory optimization for aerial 3d
scanning,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5324–5333.

[27] R. Ghuge and V. Nagarajan, “Quasi-polynomial algorithms for sub-
modular tree orienteering and other directed network design problems,”
in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 2020, pp. 1039–1048.

[28] G. Shi, L. Zhou, and P. Tokekar, “Robust multiple-path orienteer-
ing problem: Securing against adversarial attacks,” arXiv preprint
arXiv:2003.13896, 2020.

[29] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in Proceedings of
the International Conference on Automation Science and Engineering,
2018, pp. 7–14.

[30] H. D. Ratliff and A. S. Rosenthal, “Order-picking in a rectangular ware-
house: a solvable case of the traveling salesman problem,” Operations
research, vol. 31, no. 3, pp. 507–521, 1983.

[31] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The traveling
salesman problem: a computational study. Princeton university press,
2006.

[32] H. Cambazard and N. Catusse, “Fixed-parameter algorithms for rectilin-
ear steiner tree and rectilinear traveling salesman problem in the plane,”
European Journal of Operational Research, vol. 270, no. 2, pp. 419–429,
2018.

[33] F. Betti Sorbelli, F. Corò, C. M. Pinotti, and A. Shende, “Automated
picking system employing a drone,” in 15th International Conference
on Distributed Computing in Sensor Systems, DCOSS 2019, Santorini,
Greece, May 29-31, 2019, 2019, pp. 633–640.

[34] G. Cornnejols, M. Fisher, and G. Nemhauser, “Location of bank ac-
counts of optimize float: An analytic study of exact and approximate
algorithm,” Management Science, vol. 23, pp. 789–810, 1977.

[35] M. Conforti and G. Cornuéjols, “Submodular set functions, matroids and
the greedy algorithm: tight worst-case bounds and some generalizations
of the rado-edmonds theorem,” Discrete applied mathematics, vol. 7,
no. 3, pp. 251–274, 1984.

[36] M. Sviridenko and J. Ward, “Tight bounds for submodular and
supermodular optimization with bounded curvature,” arXiv preprint
arXiv:1311.4728, 2013.

[37] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Information processing letters, vol. 70, no. 1, pp. 39–45, 1999.

[38] A. Krause and C. Guestrin, A note on the budgeted maximization
of submodular functions. Carnegie Mellon University. Center for
Automated Learning and Discovery, 2005.

[39] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE). IEEE, 2018, pp. 14–21.

[40] M. A. Oliver and R. Webster, “Kriging: a method of interpolation for ge-
ographical information systems,” International Journal of Geographical
Information System, vol. 4, no. 3, pp. 313–332, 1990.

[41] C. Tullo and J. Hurford, “Modelling zipfian distributions in language,”
in Proceedings of language evolution and computation workshop/course
at ESSLLI, 2003, pp. 62–75.

15

Francesco Betti Sorbelli received the Bachelor and
Master degrees cum laude in Computer Science from
the University of Perugia, Italy, in 2007 and 2010,
respectively, and his Ph.D. in Computer Science
from the University of Florence, Italy, in 2018. He
was a postdoc researcher at University of Perugia
in 2018 under the supervision of Prof. Cristina M.
Pinotti. Currently, he is a postdoc at the Missouri
University of Science and Technology University,
USA, under the supervision of Prof. Sajal K. Das.
His research interests include algorithms design,

combinatorial optimization, unmanned vehicles.

Stefano Carpin is Professor in the Department of
Computer Science and Engineering at the University
of California, Merced. He received his Laurea and
Ph.D. degrees in electrical engineering and computer
science from the University of Padova, Italy in 1999
and 2003, respectively. From 2003 to 2006 he held
faculty positions with Jacobs University Bremen,
Germany. Since 2007 he has been with the School of
Engineering at UC Merced, where he established and
leads the robotics laboratory. His research interests
include mobile and cooperative robotics for service

tasks, and robot algorithms. He served as associated editor for the IEEE
Transactions on Automation Science and Engineering and for the IEEE
Transactions in Robotics and he is the founding chair for the Department of
Computer Science and Engineering at the University of California, Merced.

Federico Corò received the Bachelor and Master de-
grees cum laude in Computer Science from the Uni-
versity of Perugia, Italy, in 2014 and 2016, respec-
tively and his Ph.D. in Computer Science in 2019
at Gran Sasso Science Institute (GSSI), L’Aquila,
Italy. Currently, he is a postdoc researcher in the
Department of Computer Science at La Sapienza in
Rome, Italy. His research interests include several
aspects of theoretical computer science, including
combinatorial optimization, network analysis, and
the design and efficient implementation of algo-

rithms.

Sajal K. Das is a professor of computer science
and Daniel St. Clair Endowed Chair at Missouri
University of Science and Technology. His research
interests include wireless sensor networks, mobile
and pervasive computing, cyber-physical systems
and IoT, smart environments, cloud computing, cy-
ber security, and social networks. He serves as the
founding Editor-in-Chief of Elsevier’s Pervasive and
Mobile Computing journal, and as Associate Editor
of several journals including the IEEE Transactions
of Mobile Computing, IEEE Transactions on De-

pendable and Secure Computing, and ACM Transactions on Sensor Networks.
He is an IEEE Fellow.

Alfredo Navarra is Associate Professor since 2015
at the Mathematics and Computer Science Dept,
University of Perugia, Italy. He received his Ph.D.
in Computer Science in 2004 from “Sapienza” Uni-
versity of Rome. Before joining the University of
Perugia in 2007, he has been with various interna-
tional research institutes like the INRIA of Sophia
Antipolis, France; the Dept of Computer Science
at the Univ. of L’Aquila, Italy; the LaBRI, Univ.
of Bordeaux, France. His research interests include
algorithms, computational complexity, distributed

computing and networking.

Cristina M. Pinotti received the Master degree
cum laude in Computer Science from the University
of Pisa, Italy, in 1986. In 1987-1999, she was
Researcher with the National Council of Research
in Pisa. In 2000-2003, she was Associate Professor
at the University of Trento. Since 2004, she is a
Full Professor at the University of Perugia. Her
current research interests include the design and
analysis of algorithms for wireless sensor networks
and communication networks.

