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Abstract. We present a novel strategy for a patroller defending a set
of heterogeneous assets from the attacks carried by an attacker that
through repeated observations attempts to learn the strategy followed
by the patroller. Implemented through a Markov chain whose stationary
distribution is a function of the values of the assets being defended and
the topology of the environment, the strategy is biased towards providing
more protection to valuable assets, yet is provably hard to learn for an
opponent. After having studied its properties, we show that our proposed
method outperforms strategies commonly used for this type of problems.
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1 Introduction

Intelligent autonomous systems are increasingly utilized for providing surveil-
lance to valuable or sensitive assets, such as harbors, banks, airports and the
like [18]. Such systems may be implemented by deploying robots in the environ-
ment, or as decision support systems informing one or more human operators
about how to complete the task. In the following, we use the terms agents or
patrollers to indicate the entities protecting the assets. In non trivial scenar-
ios assets are spatially distributed, and when the number of assets to guard is
larger than the number of agents used to protect them, patrollers need to move
between different assets to ensure coverage. Central to this problem, then, is
a scheduling algorithm deciding the route an agent should follow. In compet-
itive situations where patrollers face adversarial entities trying to compromise
the assets being protected, deterministic patrolling routes are normally avoided
because through repeated observations an intelligent adversary could easily de-
termine the deterministic route, and then attack an asset while being sure it
is not protected. Randomization plays then an essential role in these problems.
However, purely random strategies are not ideal either, in particular if the assets
are heterogeneous and of different value. In such case the patroller should devote
more effort to defend the more valuable assets, i.e., introduce some bias in the
route towards the more valued locations. This approach, however, is also prone
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to being learned and forecast by an intelligent opponent that can build a model
of the process used to generate patrolling routes.

In this paper, we present a novel patrolling strategy for a single patroller that
is provably hard to model or learn for an adversarial opponent. Notwithstanding,
the strategy is not purely random, but rather biased to provide more coverage
to the most important assets. Central to our approach is the idea of allowing
the patroller to slow down when traveling between vertices, thus introducing
unpredictability in the time it takes to move from asset to asset. As we will
show, an opponent trying to determine how often a patroller visits a certain
region will essentially be faced with the problem of forecasting a white noise
time series. To ensure that more valuable assets are visited more often, the next
vertex to visit is selected using a Markov chain whose stationary distribution
considers the structure of the underlying graph and ensures that expected losses
are bounded in a worst case scenario. The original contributions of this paper
are the following:

– we consider an adversarial patrolling setting where we assume realistic ob-
servation capabilities for the attacker;

– we devise an approach to approximate a strategy that is optimal against
a fully informed attacker and that makes information gathering through
observation a difficult process, independently on how the attacker formulates
its beliefs;

– we empirically evaluate the proposed approach in realistic settings and we
compare it with a mainstream approach for robotics surveillance applica-
tions.

The rest of this paper is organized as follows. Related work is discussed in
Section 2, where we also outline how our work differs, while the adversarial
patrolling problem we consider is formally introduced in Section 3. Next, in
Section 4 we recap a few facts about Markov Chains necessary to prove the
properties of the patrolling algorithm we then present and study in Section 5.
Building upon our theoretical findings, in Section 6 we show how our algorithm
defeats commonly used alternatives. Finally, conclusions are given in Section 7.

2 Related Work

The use of mobile robots in surveillance settings received considerable attention
from the Robotics and AI communities in the recent years. The classic problem
formulation, which is also the one we adopt in this work, describes the environ-
ment by means of a graph whose vertices represent areas to protect. To safeguard
these assets, one or more patrolling agents travel on this graph, trying to detect
and stop ongoing intrusions in each currently visited vertex.

A patrolling strategy is used to determine the movements of the patrolling
agents. Its general objective is to schedule the patrolling activities to optimize
the enforced protection in the environment and the execution costs. A first the-
oretical analysis that recognized the importance of this problem was presented
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in [8]. Therein, the author studies the optimality of particular classes of pa-
trolling strategies adopting a criterion based on the idleness of a vertex, defined
as the time elapsed since its last visit by a patroller. Idleness-based criteria
naturally encode the intuitive rationale that the more frequently a vertex is pa-
trolled, the more protected it will be. This type of approaches are today among
the mainstream solutions for a large number of applications deployed in the real
world [13]. Most of the idleness-based settings entail hard optimization prob-
lems, making the study of heuristic and approximated solutions an important
goal. For example, the work proposed in [2] studies a setting where idleness is
combined with the importance of the different vertices and provides approxima-
tion algorithms able to scale up to very large instances.

A parallel line of research focuses on stochastic surveillance strategies based
on Markov chains and Monte Carlo techniques. The general idea in these works
is to devise strategies that could exhibit desired properties at convergence. For
example, in [9] the authors define the patrolling strategy as a Markov chain
and seek the minimization of the mixing rate to a desired steady state uniform
distribution for an homogeneous setting where all vertices have equal importance.
A more recent example is presented in [1], where the objective to be minimized
is the mean first passage time.

All the above approaches, either deterministic or stochastic, do not consider
the adversarial nature of the patrolling task. Along such dimension, they are
complemented by the wide literature on security games [16], that addresses the
general problem of resource allocation in the presence of rational adversaries
and that includes models specifically tailored for patrolling on graphs [3, 5]. The
working assumption of these approaches is that the patrolling task is carried out
in the presence of a rational attacker that, thanks to unlimited observation capa-
bilities, has exact knowledge of the patrolling strategy. This assumption results
in a leader-follower interaction where the attacker substantially best responds to
the patrolling strategy it observes.

Some model refinements considered security games where the attacker has
limited or constrained observation capabilities. One notable example is [4], where
the attacker constructs a belief over the patrolling strategy by performing costly
observations. In [6] the authors consider a similar belief-based observing attacker
and show that planning against the strongest observer induces limited losses.

In a departure from former literature in this area, in this work we consider a
patrolling setting characterized by an observing attacker and we try to overcome
the predictability of the widely-adopted deterministic idleness-based patrolling
strategies. To this end we seek a stochastic approach based on Markov chains
that, instead of focusing on a particular convergence property, seeks a steady-
state distribution that complies with the area coverage requirements while, at
the same time, being difficult to predict for an observer. Differently from the
classical security games literature, we do not assume a setting where the at-
tacker has exact knowledge of the patrolling strategy that is being executed.
With respect to security games that considered refinements of the observer, we
adopt a much more limited (and realistic) attacker model, i.e., one that cannot
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obtain full knowledge of the patrolling strategy even with unbounded time or
observations. We maintain that such a model is more suitable to capture realistic
interactions between a robotic patrolling system and a malicious attacker in a
physical environment represeted by a graph.

3 Problem Definition

Our patrolling problem is defined as follows. We consider a domain D within
which K target locations are found. Let the target locations be l1, . . . , lK . An
undirected, weighted graph G = (V,E) is used to model this environment. Each
target location is associated with a vertex inG, and the weight of and edge (li, lj),
denoted as di,j ∈ R+, represents the temporal traveling cost when moving from
li to lj (or viceversa). We assume the graph is connected and complete3 and
we furthermore set di,i = 0 for all vertices, even though self-loop edges do not
necessarily need to be assumed. Edge costs are assumed to be symmetric, and
therefore di,j = dj,i Each target is associated with a value vi, which encodes a
measure of its importance, and a time to attack ai, which will be explained later.

The task we consider is that of controlling one patrolling agent moving over
the graph G with the objective of protecting its targets. Differently from what
typically done in graph exploration settings, we do not assume non-preemptive
edge traversals. The only constraint we enforce is that when leaving a vertex li
the patroller cannot arrive at another vertex lj before at least di,j time units have
passed. Moreover, the patroller is assumed to have attack detection capabilities
localized to the currently occupied vertex. We assume to perform this task under
a threat modeled as an attacker agent whose objective is compromising one of
the target locations. To successfully carry out an attack on target li, the attacker
has to position itself at li for a time greater or equal than the attack time ai.
During such time, if the patroller visits li before the attack time expires, the
attacker is neutralized and the attack fails. Figure 1 illustrates this interaction,
where, as customary in literature, we assume that payoffs reflect a constant-sum
setting. Specifically, defining ν =

∑
li∈V vi, we assume that when the attacker

successfully carries out an attack to target li it receives a payoff of vi while the
patroller gets ν − vi. If instead the attack is detected the attacker receives 0
while the patroller gets ν.

The patroller’s sequence of visits to the targets is defined by a patrolling
strategy that is not accessible to the attacker. However, the attacker can observe
a specific single target li and, at any time, it can determine if the patroller is
currently at that vertex or not. Formally, this means that the attacker is capable
of recording the timestamps of the sequence of visits that the patroller performs
at target li and, from such list of timestamps, it can compute the inter-arrival
times at li. This sequence represents the only source of knowledge available to
the attacker. Based on this setup, the following two facts easily follow:

3The assumption is w.l.o.g. since any non-complete graph can be turned into a
complete one by taking its closure on shortest paths, i.e., adding an edge (li, lj) and
setting di,j to the cost of the shortest path between li and lj in the original graph.
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t′ t′ + aj

Patroller visit

t′ t′ + aj

Patroller visit

Fig. 1. Two scenarios where the attacker attacks location lj at time t′. In the first
case (top) the next visit to lj by the patroller happens before t′ + aj , the attacker is
detected and the attack fails. In the second case (bottom) the next visit happens after
t′ + aj and the attacker is therefore successful and receives reward vj .

– the attacker will attack the observed vertex, but the patroller does not know
the vertex observed by the attacker;

– the patroller cannot increase the chances of detecting an attack by spending
time at a vertex since a rational attacker will never strike a target that is
under surveillance; in practice, as soon as it visits a vertex, the patroller
leaves it.

The question we aim at answering is therefore the following. How should
the patroller schedule its visits to the locations, so that the expected reward
gathered by the attacker is minimized? Notice that, for now, we formulate our
question without making any assumption on the algorithm used by the attacker
to translate the gathered information into an attack decision.

4 Background in Markov Chains

We shortly recap some basic facts about Markov chains that will be useful to
establish the properties of the algorithm we propose in the following section. For
sake of brevity, the discussion remains informal. For more details and a rigorous
discussion, the reader is referred to textbooks in stochastic processes, such as
[11, 12].

A Markov chain with finite state space is defined by a finite set of states
{s1, . . . , sn} and an n× n transition matrix P whose (i, j)-th entry pi,j defines
the one-step transition probability, i.e., pi,j = Pr[Xt+1 = sj |Xt = si], where Xt

is the state of the Markov chain at time t. The matrix P is stochastic, i.e., its
rows add to one. A Markov chain is irreducible if from each state it is possible
to move to any other state in one or more steps. A state s in a Markov chain
is periodic if starting from s the chain can return to s only after a number of
steps multiple of an integer larger than one. A state is aperiodic if it is not
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periodic. In an irreducible Markov chain, if one state is aperiodic, then all states
are aperiodic. Based on these definitions, it is immediate to observe that if
all entries in P are strictly positive, then the Markov chain is irreducible and
aperiodic. If a Markov chain is irreducible and aperiodic, there always exist a
unique stationary distribution, i.e., an n-dimensional stochastic vector π such
that

π = πP .

The stationary distribution π describes the probability that, irrespective of
the initial state, the Markov chain is in a given state once it has converged,
i.e., πi is the probability that the Markov chain is in si after a large number
of transitions. For a given Markov chain, the recurrent visit time for a state
si is the number of transitions until the chain returns to state si given that it
started in state si. The recurrent visit time for a vertex si is a discrete random
variable whose expectation is 1

πi
where πi is the i-th component of the stationary

distribution π.

4.1 Relationships Between π and P

As stated above, if a Markov chain is irreducible and aperiodic, then the sta-
tionary distribution exists and is unique. This means that π is a function of P .
Often times we are interested in the opposite problem, i.e., for a given stationary
distribution π we want a transition matrix P having π as stationary distribu-
tion. In general there exist multiple transition matrices solving this problem.
The Metropolis-Hastings algorithm can be used to determine one such matrix.
In simplified form4 the method to determine P can be formulated as follows.
For i 6= j define

αi,j = min

{
1,
πj
πi

}
pi,j =

1

n
αi,j

For i = j, pii is instead set so that all rows add up to one. Therefore, for a given
π this method provides a unique transition matrix P , although this is not the
only matrix such that π = πP .

5 An Unforecastable Patrolling Strategy

In this section we develop a randomized patrolling strategy aimed at being “dif-
ficult” to observe for the attacker we introduced in Section 3, and, at the same
time, complying with the environment coverage requirements (visiting more fre-
quently the vertices with higher values) and biased to bound its worst case losses.
To ease the discussion of the final strategy, we start with a generic approach that
will then be instantiated to an algorithm with an accurate performance char-
acterization. The framework is schematized in Algorithm 1, where we outline

4This simplified version is obtained assuming that the proposal distribution is 1
n

for all i, j. See [14] for more details.
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a generic patrolling strategy whose core idea is that of decoupling the spatial
decision from the temporal one.

1 Randomly select a start vertex li ∈ V ;
2 while true do
3 Randomly select the next vertex lj ∈ V ;
4 Generate a random time t ≥ di,j with finite expectation;
5 Move to lj spending time t;
6 li ← lj ;

Algorithm 1: General patrolling strategy

The patroller operates in an infinite loop where in line 3 it selects the next
vertex to visit, and in line 4 it determines how much time to spend to move
there. The random variables describing these choices are subject to the con-
straints discussed in the following. First, when selecting the new vertex lj , a
strictly positive probability must be assigned to each vertex in V . This does not
necessarily imply a uniform distribution, and indeed in the final formulation a
uniform distribution will not be used. We assume these probabilities are however
constant and therefore history independent. Therefore, they are not influenced
by the idleness of a vertex, i.e., the time since its last visit. Second, when mov-
ing towards the selected vertex lj , the patroller does not necessarily spend the
minimum time di,j , but rather elects to spend a time t that is larger or equal
than di,j . This is modeled by a continuous random variable with zero density
for values smaller than di,j and finite expectation.5 This ability to slow down is
essential to introduce unpredictability in the patrolling schedule and therefore
make it difficult for an observer to reconstruct the sequence of inter-arrival times
to a particular target. In particular, it is critical to observe that if in step 3 the
selected next vertex lj is equal to the current vertex li, the time spent to move
from li to li can be strictly positive even though di,i = 0. This, for example,
corresponds to the situation where the patroller first leaves li, but then comes
back to li again before having visited another vertex.

Remark: the importance of this last aspect should not be overlooked. Con-
sider the classic case where from li the patroller would always pick a next vertex
different from li (or, if deciding to remain in li, it would not leave it, i.e., it would
move from li to li with time di,i = 0.) Through repeated observations, an oppo-
nent could easily figure out that when the patroller leaves li, the next visit will
happen no earlier than mi = 2 minj 6=i di,j (this is the time to move forward and
backward along the outgoing edge of minimum cost). Based on this information,
the attacker could strategically determine that if ai < mi then an attack to li
placed immediately after the patroller leaves li would succeed with probability
1. Instead, with the proposed patrolling strategy the time for the next visit to li
could be smaller than mi and therefore the attacker cannot produce an attack

5The density must be 0 for values smaller than di,j because the patroller must
generate a time larger than the minimum time necessary to complete the move.
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that is certain to succeed.

If we next consider the temporal sequence of vertices visited by the patroller
and the assumptions we made about how the next vertex is selected, this can
be modeled as a finite Markov chain whose state space is V . Let P be the
associated K×K transition matrix. Because of the assumptions we made about
how the next vertex is selected in line 3, it follows that all entries in P are
strictly positive and therefore the Markov chain is irreducible and aperiodic. Let
us now consider the time elapsed between two successive visits to vertex lj by
the patroller. As shown in Figure 2, this is a continuous random variable Rj
obtained adding a finite number of continuous random variables. In particular,
each of these is generated in step 4 in Algorithm 1. This continuous random
variable is in the following called return time to vertex lj to distinguish it from
the discrete recurrent visit time introduced in Section 4.

lj li ln lk lj
t1 t2 tM

Rj

...

Fig. 2. The return time to vertex lj (Rj) is the overall time spent by the patroller to
return in lj given that it started in lj . Rj is the sum of M random variables t1 . . . tM ,
where M is the recurrent visit time for vertex lj .

To gain some insights about the random variable Rj , it is necessary to now
make some assumptions about how the random times are generated in line 4 in
Algorithm 1. To this end, we assume that the time is distributed as a uniform
random variable between the values di,j and di,j + ∆, where ∆ > 0 is a pos-
itive constant. In the following, with a slight abuse of notation we indicate as
U [di,j , di,j + ∆] both this random variable and its density. This choice respects
the constraints we assumed earlier on, i.e., its density is 0 for values smaller than
di,j and it has finite expectation. Let us now consider the sequence of travel times
generated by the patroller while moving from vertex to vertex. Because of the as-
sumption we made about how the travel time is generated when moving between
li and lj , and since the Markov chain is irreducible and aperiodic, it follows that
travel times are distributed according to a mixture of random variables with the
following density:

K∑
i=1

πi

K∑
j=1

pi,jU [di,j , di,j +∆] (1)

where πi is the ith entry in the unique stationary distribution π associated with
P . This random variable has finite expectation equal to

K∑
i=1

πi

K∑
j=1

pi,j .
2di,j +∆

2
(2)
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Importantly, all travel times are independent, identically distributed (iid) ac-
cording to this mixture of uniforms. This allows to determine the expectation of
Rj for each location lj , as detailed by the following theorem.

Theorem 1. Let us consider the Markov Chain induced by Algorithm 1 and let
Rj be the return time to state lj. Its expectation is

E[Rj ] =
1

πj

K∑
i=1

πi

K∑
j=1

pi,j
2di,j +∆

2

where π is the stationary distribution and pi,j is the (i, j) entry in the transition
matrix P .

Proof. First recall that since all entries in P are strictly positive, the Markov
chain is recurrent and aperiodic, and therefore there exist a unique stationary
distribution π. With reference to Figure 2, Rj can be written as

Rj =

Mj∑
i=1

ti

where each of the ti is a random variable with density given by Eq. (1) and Mj

is the random variable for the recurrence time for state lj . Rj is therefore the
sum of a random finite number of iid random variables. The claim, therefore,
follows by invoking Wald’s equation (see, e.g., [14], Theorem 7.2).

E[Rj ] = E

Mj∑
i=1

ti

 = E[Mj ]E[ti] =
1

πj

K∑
i=1

πi

K∑
j=1

pi,j
2di,j +∆

2

where we used the aforementioned fact that E[Mj ] = 1
πj

and Eq. (2) for E[ti].

Remark: the attentive reader could correctly object that πi is the probabil-
ity that the Markov chain is in state li only after the chain has converged, and
therefore the tis will be iid only in the limit. However, as we we will show later
on, the algorithm will bootstrap its operations ensuring that that the Markov
chain has already converged from the first step, and therefore the tis are always
iid as required in the proof.

To determine E[Rj ] one needs to know P (from which π can be derived).
P is determined by the the patroller selects the next vertex in algorithm 1,
line 3. Alternatively, we could determine a desired stationary distribution π
and from this reconstruct a transition matrix P using the Metropolis-Hastings
method we discussed in Section 4.1. Such matrix could then be used to implement
the selection of the next vertex to visit. In the following section we show that
indeed the transition matrix will be computed starting from a target stationary
distribution.
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5.1 Optimizing Against an Observing Attacker

As customary done in the security games literature, we take a worst-case stance
and assume that the attacker is in the position of observing a vertex lj for
an indefinite amount of time. This, however, does not amount to assume that
the attacker has knowledge of the patrolling strategy, but, instead, that the
attacker can build a correct belief on the random variable Rj . The expected
payoff obtained by attacking lj immediately after the patroller leaves lj is then

vj Pr[Rj > aj ],

where Pr[Rj > aj ] is the probability that the attack will be successful since
Rj > aj corresponds to the event in which the patroller returns on lj only
after the attack time aj has elapsed (recall Figures 1 and 2). This probability is
in general difficult to compute analytically, although it could be approximated
numerically. However, being Rj a non-negative random variable, we can exploit
Markov’s inequality [10] to bound the probability of a successful attack:

Pr[Rj ≥ aj ] ≤
E[Rj ]

aj

It follows that the attacker’s expected payoff obtained on lj is upper bounded
by

Lj =
vj
aj

1

πj

K∑
i=1

πi

K∑
j=1

pi,jζi,j (3)

where we used Theorem 1 for E[Rj ] and we wrote ζi,j for
2di,j+∆

2 . Note that ζi,j
is a function of the graph and ∆ only, but does not depend on the strategy.

Since we assumed to work in a constant-sum setting, the expression for Lj
defines an upper bound on the patroller’s expected loss that we seek to minimize.
Specifically, let S be the set of all possible strategies obtained by varying the
vertex selection step in algorithm 1. Under the operational assumption that
we do not know in advance the target observed by the attacker, we define the
patrolling strategy as the solution of the following optimization problem:

min
s∈S

max
j=1...K

Lj

This can be rewritten as follows:

min
π

max
j

vj
aj

1

πj

K∑
i=1

πi

K∑
k=1

pi,kζi,k j = 1 . . .K (4)

s.t. π1 + π2 + · · ·+ πK = 1

πj > 0 j = 1 . . .K

where the optimization variable is the K dimensional stochastic vector π and
we assume that the pi,j values are obtained from π using the method described
in Section 4.1.
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Theorem 2. Assuming P is computed from π using the Metropolis-Hastings
method given in section 4.1, the solution to the optimization problem (4) is
obtained by setting

πi =
vi
ai∑K
j=1

vj
aj

1 ≤ i ≤ K. (5)

Proof. Let π∗ be the vector obtained setting all components according to Eq. (5).
The j-th function to be optimized in problem (4) is

vj
aj
E[Rj ], where E[Rj ] is the

expected return time for vertex lj induced by the strategy defined by π∗. By
substitution, it is immediate to verify that for this specific choice of π∗ all j
functions to be minimized assume the same value, i.e.,

v1
a1

E[R1] =
v2
a2

E[R2] = · · · = vK
aK

E[RK ]

By contradiction, assume π∗ is not optimal. This means there exist a vector
π′ 6= π∗ giving a lower value for problem (4). Let E[R′j ] be the expected return
time induced by π′. For π′ to be optimal, it must then be

vj
aj

E[R′j ] <
vj
aj

E[Rj ] j = 1 . . .K

i.e., E[R′j ] < E[Rj ] for all vertices. However, this cannot be simultaneously
achieved for all vertices, because if the expected return time for a vertex de-
creases, then there must be an increase in the return time for a different vertex.

At this point we have all elements to write the detailed patrolling strategy
implemented by the patroller. The input is the graph G = (V,E) together with
the values and attack times for each vertex, and the parameter ∆.

1 Input: graph G = (V,E), vector of values v, vector of attack times a,
∆; Solve optimization problem (4) and determine π;

2 Compute transition matrix P using Metropolis-Hastings method;
3 Select start vertex li ∼ π ;
4 while true do
5 Select next vertex lj with probability P ij ;
6 Generate random time t ∼ U [di,j , di,j +∆];
7 Move to lj spending time t;
8 li ← lj ;

Algorithm 2: Adopted patrolling strategy

Remark: line in algorithm 2 uses the stationary distribution to select the
initial vertex. This ensures that the Markov chain converges from the first step,
i.e., π gives the probability of being in each state at each time step. This ensures
that all travel times ti are identically distributed according to the mixture of
uniforms. If the start vertex was chosen differently, this would be true only in
the limit, i.e., after the chain has converged.
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Let us now consider what an attacker observing location lj trying to construct
a belief over Rj would “see”. The return times Rj are distributed as per Eq. (1).
This entails that the attacker would observe a sequence iid, finite mean and
variance inter-arrival times. It is useful to recall that independent variables with
finite mean and variance are also uncorrelated and therefore the sequence of
return times constitutes a white noise stochastic process. It is worth noting that
some authors require zero mean in the definition of white noise, while some
others do not and simply require uncorrelation between all values (see e.g., [11],
page 385). In our case, the return times do not have zero mean, but this is
inconsequential to the (in)ability of using past values to make predictions about
future ones. The strategy summarized in Algorithm 2 is then consistent with the
adversarial setting since it seeks optimality against a fully informed and rational
attacker (as defined in Section 3). At the same time, however, it makes difficult
to this type of attacker to reach such a fully informed condition by observing a
target. It is also worth noting that the solution to problem (4) depends on the
ratios vj/aj , i.e., the ratio between the value of a vertex and the time to attack.
This quantity is as the amount of value per unit of time that an attacker will
receive if the attack succeeds.

6 Experimental evaluation

In this section we provide some empirical assessments of the patrolling strategies
obtained with Algorithm 2, which we will refer as “Delta”. As already discussed,
“Delta” is the optimal strategy as per Problem 4. The experimental results we
present here are focused on evaluating its advantages in terms of difficulty of be-
ing observed by an attacker characterized by the local-target visibility model we
introduced in Section 3. We shall compare “Delta” with an heuristic strategy that
well represents an established class of approaches for robotic surveillance (see
our discussion in Section 2). We created a dataset of random graphs scaling up to
50 vertices. For each problem instance we execute the patrolling strategy in sim-
ulation for 5000 vertex visits. For the Delta strategy we set ∆ = max(i,j) di,j/2.

6.1 Comparing Against a Heuristic Strategy

We compare against a heuristic strategy based on vertex idleness. Formally, let
I(li) be the current idleness of vertex li defined as the amount of time since the
last visit by the patroller. In the beginning, I(li) = 0 for all li ∈ V . To understand
how I() evolves during the patrolling mission, let us assume that at time t1 the
patroller leaves a vertex l1, and it arrives at vertex l2 at time t2 ≥ t1 + d1,2.
Upon its arrival in l2, the idleness for l2 is set to I(l2) = 0, while for i 6= 2 it is
set to I(li) = I(li)+(t2−t1). Once in a vertex li, the patroller makes its decision
on where to go next by computing the following utility function for each vertex
lj 6= li:

u(lj) =
vj
aj

(
1 +

I(lj)

di,j

)
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Maximizing the above utility would result in an informed choice, where im-
portant targets that have been left unvisited would be chosen. However, the re-
sulting sequence of inter-arrival times that could be observed at a target would
be easily forecastable since the strategy is ultimately deterministic and, in the
long run, it will produce a periodic behavior. For this reason we add to the fully
informed decision a random component, inspired by ε-soft exploration strategies
[15]. The objective of the random component is to mislead an observer. We do
this by introducing a random selection with a parameter ε ∈ [0, 1] and define
the selection of lnext (the next location to patrol) as follows (we assume that li
is the current vertex occupied by the patroller):

lnext =

{
arg maxlj∈V \{li} u(lj), with probability 1− ε
choose uniformly in V \ {li}, with probability ε

One of the standard approaches to assess if a time series can be forecast from
its past values is to perform a partial autocorrelation analysis [17]. Given a lag
k, the partial autocorrelation function measures the likelihood that a sample
observed k steps in the past can be a predictor for the last observed value
of the series (the correlation between a sample and a previous one is computed
assuming a linear relationship). Figure 3 shows such analysis for the inter-arrival
times observed at particular target on a randomly generated graph with 30
vertices. The partial autocorrelation is shown for different time lags where the
blue lines define a 95% confidence interval. If at lag k the partial autocorrelation
is above or below such line, then we have confidence that with observed k samples
in the past can predict the present. As shown in the figure, the Delta strategy is
the one achieving the smallest autocorrelations. With ε = 0 we clearly get high
autocorrelations at different lag points and as we proceed to ε = 1 we got the
same profile of Delta. However, such lower predictability we obtain by increasing
ε comes at a less informed strategy, which tends to distribute coverage equally
to all the targets, without accounting for their importance.

6.2 Performance Against an Observer

The second experimental evaluation we present shows the performance of Delta
and Idleness-ε against an attacker different from the worst-case one, that is an
attacker that does not have access to the exact characterization of the inter-
arrival times. We model it by using a simple local learning method for time
series prediction as outlined in [7], namely a nearest neighbor predictor. For-
mally, the attacker at location lj gets a sequence of observations defined as
O = (R0

j , R
1
j , . . . , R

t
j) where O(i) = Rij . The observer considers sub-sequences of

finite length m (this parameter can be interpreted as the observer’s finite mem-
ory). Thus, for m− 1 ≤ i < t, call Oi = (O(i−m+ 1), . . . , O(i)). The observer
then computes

i∗ = arg min
i∈{m,...,t−1}

d(Oi, Ot)

and makes a prediction as O(i∗+1). If O(i∗+1) ≥ aj then an attack is attempted.
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(a) Delta (b) Idleness (ε = 0)

(c) Idleness (ε = 0.5) (d) Idleness (ε = 1)

Fig. 3. Partial autocorrelation analysis for the time series of inter-arrival times at a
target.

Fig. 4. Weighted protection ratio for different patrolling strategies.
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In Figure 4, we depict the performance trend of the various strategies ob-
served in a representative instance. For each vertex, we report the protection ra-
tio defined as the number of unsuccessful attacks over the number of the attack
attempts. The ratio is then multiplied by the value of the vertex it is referred to,
to account for the fact that different vertices have different values. Each point
in the curve can then be interpreted as the amount of protected value. As it
can be seen, in this setting the ability of generating a sequence of inter-arrival
times that is difficult to predict plays a critical role. However, increasing ε in
the Idleness strategy introduces only marginal improvements while the Delta
strategy achieves good performance in protecting the environment while, at the
same time, misleading the observer. This performance gap is also summarized
in Figure 5(a) showing the cumulative protected value (the sum over all the
vertices of the weighted protection ratio) and Figure 5(b) where we report the
ratio between the cumulative protected value of Delta and that achieved with
different ε. To put these numbers into context, the protected value obtained by
Delta is 56.19.

(a) (b)

Fig. 5. (a) expected protected value for different ε values. (b) ratio between the pro-
tected value of the Delta and Idleness strategy.

7 Conclusions

In this paper we have studied a novel approach to implement patrolling strate-
gies that are provably hard to learn for an observer. Our problem departs from
classic literature in security games inasmuch as the attacker does not have com-
plete knowledge of the patrolling strategy, but rather builds a model through
observations limited to a fixed subset of the environment. We maintain that this
approach is more relevant to practical applications than those based on worst
case assumptions with an omniscient attacker. Our patrolling strategy essen-
tially produces a white noise time series of interarrival times. Nevertheless, since
the patroller does not know which vertex is being observed by the attacker, the
strategy is biased towards visiting more often the vertices with high values and
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low attack times, i.e., those more likely to create large losses for the patroller.
The ability of the patroller to introduce random bounded delays (as governed
by the parameter ∆) when moving from vertex to vertex increases its unpre-
dictability. It is important to stress that this patrolling approach is suited when
the attacker learns through limited observations, but does not necessarily apply
when the attacker has global visibility about the patroller’s routes.
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