
Noname manuscript No.
(will be inserted by the editor)

Real-Time WiFi Localization of Heterogeneous Robot
Teams Using an Online Random Forest

Balaguer Benjamin · Gorkem Erinc · Stefano

Carpin

the date of receipt and acceptance should be inserted later

Abstract In this paper we present a WiFi-based solution to the localization and map-

ping problem for teams of heterogeneous robots operating in unknown environments.

By exploiting wireless signal strengths broadcast from access points, a robot with a

large sensor payload creates a WiFi signal map that can then be shared and utilized for

localization by sensor-deprived robots. In our approach, WiFi localization is cast as a

classification problem. An online clustering algorithm processes incoming WiFi signals

that are then incorporated into an online random forest. The algorithm’s robustness

is increased by a Monte Carlo Localization algorithm whose sensor model exploits the

results of the online random forest classification. The proposed algorithm is shown to

run in real-time, allowing the robots to operate in completely unknown environments,

where a priori information such as a blue-print or the access points’ location is un-

available. A comprehensive set of experiments not only compares our approach with

other algorithms, but also validates the results across different scenarios covering both

indoor and outdoor environments.

1 Introduction

Due to its importance, localization continues to be at the forefront of robotics re-

search and to generate a considerable number of algorithms, each assuming different

sensors, robotic platforms, and scenarios. Numerous solutions rely on having accurate

but expensive sensors such as a Laser Range Finder (LRF) mounted on one robot. A

Balaguer Benjamin · Gorkem Erinc
Intelligent Computer Programming Labs Inc.
413 Saddle Rock Lane
Rio Vista, CA 94571
E-mail: bbalaguer,gerinc@icplabs.com

Stefano Carpin
School of Engineering
University of California, Merced
5200 North Lake Rd.
Merced, CA 95343
E-mail: scarpin@ucmerced.edu

2

paradigm shift continuing to gain momentum relies instead on teams of heterogeneous

robots including one or more sophisticated platforms cooperating with many minimal-

istic robots [19]. The simpler robots have the distinct advantage of being inexpensive,

allowing to utilize more of them for a given scenario. The limited number of sensors

they have onboard however complicates their operation in general and localization in

particular.

Following the increasingly popular trend of multi-robot teams consisting in large

part of inexpensive robots, we present an accurate localization algorithm that exploits

WiFi Access Points (APs). Regardless of how few sensors robots get, thanks to the ever

increasing availability of pervasive connectivity, it is safe to assume that they will each

have a WiFi card to enable communication with each other or with an external base

station. Working with WiFi signal strengths broadcast from APs has its advantages

and disadvantages. On one hand, APs are ubiquitously embedded in today’s urban

environments and have unique identifiers (i.e., MAC addresses), any WiFi cards can

measure the APs’ signal strengths without connecting to them, and, unlike GPS, they

can be exploited indoor or outdoor. On the other hand, WiFi signals suffer from ob-

structions, non-linear fading, and multipath effects, making them notoriously difficult

to model. The WiFi localization problem has seen some limited success over the last

decade, but the lack of comparisons between solutions and strict constraints imposed

by previously-published algorithms render its application to some scenarios inadequate.

In particular, most approaches rely on an offline stage requiring earlier access to the

environment for the WiFi signals to be sampled [1–3,20,25]. Moreover, the sampling

process is often time consuming and requires that robots (or humans) stop along the

way to collect multiple signal samples at the same location. Although these constraints

can be acceptable in some applications (e.g., when the environment is available prior

to the robots accessing it), they become an unacceptable limitation in scenarios where

robots do not have prior information about the environment in which they will operate.

In this paper we solve these outstanding issues and propose a localization algorithm

exploiting WiFi signals that is faster and more accurate than previously-published al-

gorithms, as demonstrated by our comparative study in Section 5.1. Our contributions

are the following:

– we propose a clustering algorithm that allows the acquisition of the WiFi map to

be performed online, without having to stop the robot to collect WiFi readings or

having a priori access to the environment;

– we solve the localization problem using WiFi by casting localization as a classifi-

cation problem that is trained and solved in real-time using the formerly proposed

Online Random Forest algorithm [22];

– we contrast our method with six published algorithms, accounting for both real-

time and offline performances;

– we develop a Monte Carlo Localization (MCL) algorithm built with on top of the

Online Random Forest, in order to exploit the information provided by the robots’

odometry;

– we establish the power of our WiFi localizer by assessing its strengths across dif-

ferent datasets that cover kilometers of indoor and outdoor environments.

The paper is organized as follows. In Section 2 we highlight previous work on WiFi

localization. Our problem statement is described in Section 3. The WiFi localizer al-

gorithm follows, consisting of three potentially independent components, whose results

are consequently presented within their respective sections. We present the Online

3

Fig. 1 Illustrative representation of the WiFi readings in an outdoor environment, superim-
posed on Google Maps. The size of each ring is proportional to the AP’s signal strength and
each color represents a unique AP. The Cartesian coordinates are derived from a GPS sensor.

Clustering, in Section 4 and the online Random Forest is described in Section 5. Sec-

tion 6 introduces the MCL in the context of the Online Random Forest, and the paper

is brought to a close in Section 7 with final remarks and potential future work.

2 Related Work

The problem of WiFi localization, where signals received from APs are exploited to

localize robots, has been solved with different techniques that be categorized into two

classes. Signal modeling attempts to predict how a wireless signal behaves given a set

of parameters describing a particular condition or environment. The model provides an

estimation that can be compared to current signal readings to infer a robot’s position.

Signal mapping, an example of which is shown in Figure 1, records WiFi readings that

are spatially related to a map. The resulting WiFi map can then be utilized by robots

to localize based on current wireless readings. Theoretically, signal modeling often

requires a priori information such as the environment’s topology, the location of APs,

or approximations thereof [16,26] - information that is not required by signal mapping.

Experimentally, Howard et al. have demonstrated that signal modeling yields worse

localization results than signal mapping [17]. Electromagnetic signals are distorted due

to “typical wave phenomena like diffraction, scattering, reflection, and absorption” [4].

These challenges account for the limited availability of practical implementations of

algorithms based on this paradigm. We consequently focus on works related to signal

mapping. Readers looking for more information on signal modeling are referred to [16].

Signal mapping can be divided into a training and a localization phase. During

the training phase, the signal strengths of all APs in range are recorded and linked

to a robot’s spatial coordinate until the entire environment is covered. The training

phase is generally offline and can be acquired by a human instead of a robot [13,20]. In

fact, every cited publication in this section performs the training phase offline, where

every data point is collected prior to generating a signal map. Our proposed method

4

is instead online since new training data points are incrementally integrated into the

signal map as they are being collected, allowing the map to be immediately available

for localization. Given training data, the WiFi localization problem consists in finding

a robot’s location only utilizing the WiFi signal strengths it receives. Early solutions to

WiFi localization consisted in nearest neighbor searches [1] and bag-of-words models

for each AP [25]. An analysis of the distribution of signal strength readings suggested

that signal strengths are normally distributed [17,15], paving the way to an abundance

of Gaussian-based techniques that attempt to model the inevitable variance in signal

strength readings. The first Gaussian-based solution to WiFi localization [17], which

we subsequently call the Gaussian Model, consists in fitting a Gaussian distribution for

each location and each AP, using data acquired during the training phase. Once the

Gaussian distributions have been computed, an unknown location described by a new

set of observed signal strengths can be determined using the Gaussians’ probability

density function (PDF). Its simplicity, speed, and good accuracy have made it, even

to this day, one of the most popular WiFi localization techniques [17,20,3]. Other

popular Gaussian-based algorithms for WiFi localization involve Gaussian Processes

(GP), whether they are used directly [14,9], within a Latent Variable Model framework

(GP-LVM) [13],

WiFi GraphSLAM [18] was introduced to alleviate weaknesses exhibited by GP-

LVM such as its slow speed and the requirement of signature uniqueness. We note that,

although promising, GP, GP-LVM, and WiFi GraphSLAM require a long parameter

optimization step that make them unsuited to be used in our scenario where real-

time operation is required and computational power limited. Other techniques cast

WiFi localization as a machine learning problem solved using Support Vector Machines

(SVMs) [24] and Random Forests [2]. The accuracy of these methods can significantly

increase by taking into account a robot’s inherent temporal and spatial coherence over

time using Hidden Markov Models (HMMs) [20] or MCL [3,17]. In our former work

[2], focused exclusively on an offline setting, we compared all of these methods, cross-

validated using multiple datasets, and have found that Random Forests supplemented

by MCL yields the best results, both in terms of speed and accuracy. As explained

in the remainder of the paper, our method also includes Gaussian components, but

they are used as part of a two step process, the first of which relies on the classification

provided by the online random forest. Gaussian kernels are introduced as a second step

to implement the measurement model of a particle filter that improves the localization

performance by enforcing temporal coherence – an aspect missing in the classification

step.

3 System Setup and Problem Definition

We consider a scenario where the goal of an heterogeneous robot team is to fully ex-

plore an unknown environment. The team is comprised of R robots, with Rl “sensor-

deprived” robots and Rm “sensor-full” robots under the conditions that Rl +Rm = R

and Rl >> Rm > 0. For convenience, we will refer to the “sensor-deprived” and

“sensor-full” robots as localizers and mappers, respectively. Every robot can compute

odometry and possesses a WiFi card. The mappers are the only robots capable of local-

izing by traditional means (e.g., SLAM, GPS), whereas the localizers have no additional

sensors. As the robots independently explore the environment, the mappers incremen-

tally build their own WiFi maps, which are transferred to the localizers whenever they

5

encounter each other. Once they have received a WiFi map, localizers can evidently

transfer it to other localizers. In essence, the mappers are responsible for mapping the

environment in real-time, the information of which is relayed to the localizers who are

then able to localize within the region explored by the mappers. Evidently, the via-

bility of this approach rests on the assumption that mappers and localizers operate in

the same environment and are then in the range of the same set (or at least subset)

of APs. In terms of computational requirements, the mappers need to both localize

themselves using SLAM algorithms and update the WiFi map. Localizers just need

to localize themselves using the WiFi map produced by the mappers. As described in

the following, this WiFi localization relies on a particle filter that exploits results of a

random forest. Hence, coherently with our setup, localizer robots are tasked with less

demanding computational tasks.

It is worthwhile to note that the environment is completely unknown to the team of

robots before they start exploring. At some point in time during the mission, however,

the environment will be discovered (partially, at least) by the mappers. As long as the

mappers are capable of deducing spatial coordinates, we do not impose restrictions on

how they discover the environments - a fact highlighted by our experiments that use

GPS and SLAM to acquire the coordinates. The localizers, that do not have adequate

sensors to discover the environment by themselves or use the mappers’ data directly,

will exploit WiFi to localize within the mappers’ knowledge space. In this paper we

focus our discussion on the WiFi map building and localization when a single WiFi

map has been shared. More complex scenarios involving multiple mappers sharing and

merging their individual signal maps are left for future research.

The data for the WiFi map is acquired and represented as follows. The ith ob-

servation Zi = [z1i , z
2
i , . . . , z

a
i] is acquired using a WiFi card, where zki stands for the

signal strength received from the k-th AP and a denotes the total number of APs

seen throughout the environment. Although we measure the signal strengths zki as the

number of decibels relative to one milliwatt (dBm), other measures such as the signal-

to-noise ratio have been shown to work well for WiFi localization [2,20]. Since we do

not know in advance a, the total number of APs in the environment, the size of the

observation vector Zi is dynamically adjusted as the robot explores new regions of the

environment and discovers previously unseen APs. For those APs that cannot be seen

from certain locations, we set zki = −100 for any AP k that was not perceived within

observation Zi. A mapper links each observation Zi to a Cartesian location Ĉi = [Xi, Yi]

that is inferred using a traditional localization process (e.g., SLAM, GPS), resulting in

the pair

Âi =
{
Ĉi, Zi

}
. (1)

As the mapper explores the environment over time, more Âi pairs are collected, the

collection of which is written

T̂ =

m⋃
i=1

Âi

where m is the total number of Cartesian-observation pairs. Figure 1 provides a visual-

ization of T̂ acquired in an outdoor environment. It additionally provides a qualitative

indication that it is possible to differentiate between different locations by only con-

sidering APs’ signal strengths.

Remark: although temporal variability, signal distortion, multi-path effects, and

other noise sources are known problems associated with WiFi signals, these challenges

6

are implicitely mitigated when the robots operate in environments covered by a large

number of APs. More specifically, and as will be shown in the experiments, localization

accuracy is directly proportional to AP density and at least 6 APs must be seen to

achieve GPS-accuracy (i.e., 3 meters or less). In our real-world experiments (see Section

5.2), the inherent noise encompassed in WiFi signal measurements did not negatively

impact the performance of the algorithms presented in the following. A comprehensive

sensitivity analysis of this aspect is however beyond the scope of this paper.

4 Online Clustering

In an attempt to model the noise of the WiFi readings and, consequently, improve classi-

fication accuracy, we group WiFi readings that are spatially close together. Specifically,

we partition them observations using their Cartesian coordinates Ĉ = {Ĉ1, Ĉ2, . . . , Ĉm}
into p clusters C = {C1, C2, . . . , Cp}, where p < m and Ci represents the i-th cluster’s

center. Striving for an online algorithm, every time a cluster is created its label i and

centroid Ci are utilized to update the Online Random Forest described in the next

section. The clustering needs to be performed online since new Cartesian-observation

pairs Âi are collected over time as a mapper explores the environment. These new

observations need to be clustered without altering the cluster assignments of exist-

ing observations that have already been used by the Online Random Forest. Hence,

we need an online clustering algorithm that makes hard decisions with respect to the

clusters’ boundaries. In other words, once a boundary is set between two clusters, it

cannot be modified and the cluster is fixed. Two parameters are crucial for successful

localization: p, the total number of clusters, and si, the number of observations within

each cluster. Due to the fact that the number of clusters is proportional to the size

of the explored area and the WiFi readings’ density, it is not possible to determine

the value of p until the whole environment is explored (since it would contradict with

our goal of creating an online clustering algorithm). The number of clusters implicitly

defines the average distance between the clusters’ centers, which has an impact on

the localization accuracy that we analyze in Section 5.2. Hence, instead of employing

a sequential k-means clustering algorithm that requires the number of clusters to be

set before the clustering process starts, our online clustering algorithm focuses on the

maximum radius gmax of any cluster, which can be set based on the desired localiza-

tion resolution. The number of observations per cluster si encompasses an important

tradeoff between accurate noise modeling and mapping time. The value si = 3 has

been chosen based on the experience we gained in [2].

The design of our Online Clustering algorithm takes into account these parameters

and is built around the idea of growing multiple clusters until they encompass enough

observations, in which case the clusters are fixed. Consequently, each cluster can be in

one of two states describing whether the cluster’s boundary is fixed or growing. For each

new Cartesian-observation pair Âi, we identify the centroid Cc of its closest cluster Ac

and compute the Euclidean distance g between Ĉi and Cc. There are two cases to take

into account, depending on the cluster’s state. If cluster Ac is fixed and the distance

g is less than a pre-defined maximum radius gmax, then the observation Zi is directly

added to cluster Ac. Otherwise (if g ≥ gmax), a new growing cluster is started with

observation Zi. If cluster Ac is growing the observation Zi is added to Ac. The growing

clusters are converted to fixed clusters by performing a binary split on them. Growing

clusters are split using the k-means algorithm with k = 2, resulting into two clusters A′

7

Fig. 2 Illustrative representation of the clustering algorithm in an outdoor environment, su-
perimposed on Google Map. The different clusters are represented by different colors and each
encompass a varying number of WiFi observations.

and A′′. Both new clusters are fixed if they each encompass at least smin observations

within a radius of gmax from the cluster’s center. When either of those conditions fail,

the new clusters A′ and A′′ are ignored and the original cluster Ac keeps growing. This

strategy guarantees that each fixed cluster will have at least a minimum number of

observations per cluster smin, which is set to 3 based on the results of [2]. Algorithm

1 summarizes the clustering strategy we propose. The input parameter Âi is the new

sensor reading to integrate as defined in Eq. 1. A is the current collection of clusters

where each cluster Ai is defined as in Eq. 2.

Algorithm 1 Clustering(Âi = {Ĉi, Zi},A = {A1, A2, . . . , Ap})
1: Let Cc be the centroid closest to Ĉi and Ac the corresponding cluster
2: g ← ||Cc − Ĉi||2
3: if FixedCluster(Ac) then
4: if g ≤ gmax then
5: Add Zi to cluster Ac

6: else
7: Create new growing cluster Ap+i = Âi

8: Add Ap+i to A
9: if GrowingCluster(Ac) then

10: Add Zi to cluster Ac

11: Split cluster Ac into fixed clusters A′ and A′′

12: if |A′| > smin and |A′′| > smin and radius(A′) < gmax and radius(A′′) < gmax

then
13: Remove Ac from A
14: Add A′ and A′′ to A
15: else
16: Discard A′ and A′′

8

For each cluster, we store the Cartesian coordinate of the cluster’s center Ci along

with all of the observations located inside the cluster into a set Ai

Ai =
{
Ci, Z

1
i , Z

2
i , . . . , Z

si
i

}
(2)

where si is the total number of observations inside cluster i, i.e., si observations are

made for each cluster i, whose center is Ci. It is worthwhile to note that the number of

observations in one cluster can be different than the number of observations in another

cluster, i.e., si is not necessarily equal to sj ∀i,j : i 6= j. Finally, the WiFi map can be

represented by a set T of clusters and their observations,

T =

p⋃
i=1

Ai.

Figure 2 shows a visual representation of the resulting clusters for a path followed in

an outdoor environment.

By analyzing our experimental online clustering data, we have made the following

two observations. First, signal strength readings are consistent across robots with dif-

ferent WiFi cards, a fact corroborated by [17] that implies sharing WiFi data among

robots equipped with different hardware is possible. Second, signal strength measure-

ments taken at different days, times, or conditions were not significantly different,

indicating that WiFi data acquired a long time ago (i.e., months apart) can still be

exploited by robots operating in the same environment.

5 Online Random Forest

5.1 Description

We cast WiFi localization as a classification problem. Our objective is to determine

a function f : Z → C starting from the training data T acquired by the mapper.

The function f takes a new observation Z = [z1, . . . , za] from a localizer and returns

the Cartesian coordinate C corresponding to observation Z. Many different machine

learning techniques have been introduced to compute f from T , but the Random

Forest (RF) [5] has been shown to provide the best results for WiFi localization [2].

The leading limitation of the RF algorithm is due to the fact that the entire training

data set T must be available a priori, an assumption that does not hold for real-time

WiFi localization. Similarly to [22], we modify the RF algorithm, creating an Online

Random Forest (ORF) that learns from incremental updates to the training data T ,

in an online fashion. To the best of our knowledge, this is the first successful use of

ORF to learn WiFi maps and solve the robot localization problem. We subsequently

describe our ORF algorithm with respect to its offline counter-part. Specifically, an RF

is an ensemble of F decision trees built to reduce over-fitting behaviors often observed

in single decision trees. Each tree f is created from a subset T ′ of the full training data

T (selected randomly with replacement). Every time a new node in a tree is created,

a random set D of decision functions d(Z) > θ are created, the best of which is used

to split the node into left and right children. The definition of “best” varies from one

implementation to another, with the most popular partitioning criteria being the Gini

index, the twoing rule, and the information gain. We empirically found no distinction

between the criteria in terms of localization accuracy and arbitrarily use the Gini index.

9

The process of generating decisions is the same for the RF and ORF. Since we do not

have access to the full training data to create our trees, we update them, as shown in

Algorithm 2, every time we receive a new observation-cluster pair (Z, i), with i being

a cluster number that is in a fixed state.

Algorithm 2 ORF-Update(Z, i)

1: for f ← 1 to F do
2: for k ← 1 to P = Poisson(1) do
3: l = navigateToLeaf(Z)
4: updateLeaf(l, Z, i)
5: if shouldSplit(l) then
6: arg maxd∈D 4Gini(l, d)
7: createChildren(l, d)
8: if P ← 0 then
9: OOBEt ← updateOOBE(t, Z, i)

10: if x drawn from Bern(OOBEt) then
11: rebuildTree(t)

Algorithm 3 shouldSplit(l)

1: if diffClusters(l) < 2 then
2: return false
3: if 4Gini(l, d) < α ∀d ∈ D then
4: return false
5: return true

Each of the F trees is individually updated (line 1) and a Poisson distribution with

parameter λ = 1 models the incremental arrival of new data (line 2). The Poisson

distribution essentially mimics the random selection with replacement of the RF’s

training data. The integer P is drawn from the Poisson distribution and dictates the

number of times that the tree will take into account the observation-cluster pair (Z,

i). P can be 0 or greater than 1, mimicking an observation that was not sampled or

sampled multiple times, respectively. The choice of a Poisson distribution comes from

Oza et al. [21] who proved convergence with respect to the offline RF. Since the nodes

do not have access to all of the training data, we use observation Z to navigate through

the tree, eventually reaching a leaf l (line 3). We add the new observation-cluster pair

(Z, i) to leaf l (line 4). So far, the algorithm simply updates the amount of data

encompassed by each node of each tree in the ORF. We decide when the leaves should

be expanded using the shouldSplit function (line 5), whose pseudo-code is given in

Algorithm 3. When choosing whether or not to split a node, we take into account two

parameters (Algorithm 3). First, the leaf needs to possess observations representing at

least two different clusters. Since we know that the clusters will come in sequentially

from the Online Clustering algorithm, we want to make sure that we do not split a

node whose data only account for one cluster. Second, we only want to split the node

if the splitting criterion gain with respect to a decision d, 4Gini(l, d), has increased

significantly. The extent to which the gain should increase is dictated by parameter α.

If the choice of splitting the node is made (line 5), the best decision d ∈ D is determined

10

(line 6) and exploited to split the leaf, creating left and right children (line 7). The

newly-created children are imparted with their parent’s data.

In order to make the ORF more robust, we add the capability of removing and

reconstructing bad trees in the forest. This feature adds the capability of unlearning

old information that might no longer reflect the overall data distribution. To do so, we

exploit the observation-cluster pairs that were not trained as part of the tree, called

Out-Of-Bag (OOB) samples. From these samples, which only occur when P = 0, we

can compute the OOB Error (OOBE) for each tree (line 10). In some sense, the OOBE,

which is analogous to computing cross validation errors, supplies a quantitative measure

of a tree’s performance. By evaluating this measure, we can infer when a tree becomes

less useful, in which case we destroy it and rebuild it from scratch using the generic RF

tree building algorithm. To decide whether or not a tree should be discarded (line 11),

we sample x from a Bernoulli distribution whose parameter p is set to the OOBE. The

sample x is either 1 or 0 and indicates if the tree should be discarded. The Bernoulli

distribution essentially models the probability of discarding a tree, which is directly

proportional to the OOBE. It is important to note that reconstructing one tree in the

entire forest does not significantly damage the algorithm’s performance, yet allows the

forest to adapt over time.

5.2 Results

Since our MCL algorithm will depend on the Online Random Forest, we evaluate the

Online Random Forest before describing the MCL algorithm in the next section. More

specifically, we compare the Online Random Forest against six previously-published

algorithms, namely: Nearest Neighbor Search [1]; Gaussian Model [17,20,3]; Gaus-

sian Processes [14,9]; Support Vector Machine [24]; Decision Tree [6]; and the (offline)

Random Forest [5]. Interested readers are directed to the referenced publications for

additional details. The reader should also notice that the experimental comparisons

presented in our former paper [2], although apparently similar, are different, because

they refer to offline situation, whereas we are here considering an online scenario. Since

we are focusing on online WiFi map building, we briefly describe each method with

respect to its online capabilities. We “convert” the Random Forest to an online version

by re-training it from scratch every time a new cluster is created. This is evidently

time consuming, as will be shown in this section, but provides a very accurate baseline

to compare against. The multi-class SVM can be trained in a one-against-one or one-

against-all methodology. Since the one-against-all technique does not allow for online

learning (unless training is performed from scratch for every new cluster), we use the

one-against-one technique. Assuming we have discovered c clusters that were already

trained one-against-one, a new cluster will require training c new SVMs. Evidently, the

number of observations grows over time and so does the SVM training time. The Gaus-

sian Model and Nearest Neighbor Search are already capable of running online. Since

the Gaussian Model computes a set of Gaussian distributions for each cluster indepen-

dently of any other clusters, we can simply wait to get a new cluster before computing

its distribution. The Nearest Neighbor Search does not have a training phase and is

consequently online by default.

We run the experiments on a set of six different datasets, each representing dis-

tinctive environments and operating conditions. Table 1 provides detailed information

for each of the six datasets. As can be seen from the table, we acquired two datasets,

11

UCM and Merced, representing indoor and outdoor environments. The remaining four

datasets, RICE, CMU, USC, and HKUST, were made publicly available by the au-

thors of [20], [8], [17], and [10], respectively. The datasets differ significantly in terms

of environment’s type (e.g., indoor, outdoor), WiFi map acquisition process (e.g., of-

fline, online), mapping agent (e.g., robot, human), localization technique used to infer

the Cartesian coordinates Ci (e.g., SLAM, GPS, manual labeling, laser-based MCL),

wireless signal metric (e.g., dBm, SNR), approximate size of the environment covered,

total number of clusters (c), average distance between clusters, minimum number of

observations per cluster, and total number of APs discovered (a). As a group, these

datasets exemplify a wide range of operating conditions and provide the most exten-

sive set of WiFi localization experiments to date. Since this set of experimental results

is purely meant to evaluate the Online Random Forest against other algorithms and

across different datasets, all of the data presented in this section was acquired by a

single robot.

UCM Merced RICE CMU USC HKUST
Source In-House In-House Public Public Public Public
Environment Indoor Outdoor Indoor Indoor Indoor Indoor
Map Acquisition Offline Online Offline Offline Online Offline
Mapping Agent Robot Robot Human Human Robot Human
Localization SLAM GPS Manual Manual MCL Manual
Signal Metric dBm dBm SNR SNR dBm dBm
Length Covered 150m 1.5km 1.5km 300m 100m 100m
No. of Clusters, p 156 720 506 209 120 106
Clusters’ Distance 0.89m 1.96m 3.33m 1.58m 0.69m 1.00m
min si ∈ Ai 20 7 100 32 20 25
No. of APs, a 48 231 57 152 4 144

Table 1 Detailed information about the datasets used for the classification experiments. Each
column corresponds to a dataset, with each row representing a specific characteristic of the
dataset. Note that although the USC dataset was acquired offline, we processed it with our
online algorithm.

We start by analyzing each algorithm’s accuracy as a function of the number of

readings taken at each location, s, a plot of which is shown in Figure 3. The training

and classification data are randomly sampled 50 different times from UCM dataset for

each experiment in order to remove any potential bias from a single sample. Presented

results are averages of those 50 samples and we omit error bars in our graphs since

the results’ standard deviation were all similar and insignificant. Since our goal is to

ultimately be able to map unknown environments in real-time, the data acquisition

needs to be efficient. It takes on average 411ms to get signal strength readings from

all the APs in range so we want to minimize s. Figures 3 and 4 show the average and

the standard deviation of the classification error, respectively. As expected, there is

a tradeoff between the algorithms’ localization accuracy and the number of readings

used during the training phase. Since we want to limit the time it takes to gather

the training data, setting the number of readings per location to 3 (s = 3) provides

a good compromise between speed and accuracy, especially since the graph shows an

horizontal asymptote starting at or around that point for the best algorithms. As such,

the rest of the results presented in the paper will be performed using 3 readings per

location. This value is in accordance with the findings we determined in [2]. All the

12

algorithms, except the Decision Tree, reached an average classification error below 1m

with 3 readings per location. Furthermore, the Gaussian based techniques, as expected,

performed badly when 1 reading is used per location since in that case the training

data does not contain enough variance to model, i.e., σ = 0.

Fig. 3 Average classification error, in meters, for each classification algorithm as a function
of increasing number of readings per location.

Fig. 4 Standard deviation of the classification error, in meters, for each classification algorithm
as a function of increasing number of readings per location.

Figure 5 shows the cumulative probability of classifying a location within the error

margin indicated on the x axis. This figure corroborates the findings of Figure 3,

showing that the best algorithm is the Random Forest, which had never been exploited

13

in the context of WiFi localization. Moreover, the Random Forest can localize a new

observation, Z, to the exact location (i.e., zero margin of error) 88.58% of the time.

Fig. 5 Cumulative probability of classification with respect to the error margin.

The average classification error of each algorithm and each dataset is shown in

Figure 6. As can be seen from the figure, both Random Forests are consistently more

accurate than the other algorithms, regardless of the dataset and, consequently, en-

vironment used. The Online Random Forest is only marginally worse than its offline

counterpart; 7.39% on average. Compared with the other algorithms, the Online Ran-

dom Forest is, on average, 15.96%, 103.24%, 301.26%, 475.99%, and 1400.71% better

than the previously published WiFi localization algorithms (Gaussian Model, Nearest

Neighbor Search, Support Vector Machine, Gaussian Process, and Decision Tree, re-

spectively). It is also worth mentioning that the Rice dataset uses signal to interference

ratios for their observations as opposed to signal strengths. Although both measures

are loosely related, this indicates that the classification algorithms are both general

and robust. These important findings indicate that the proposed Online Random For-

est is data- and environment-independent and that we are not biased or over-fitting our

datasets. The reader should note that for the indoor environments (i.e., UC Merced

and Rice), the average classification accuracy is proportional to the average distance

between clusters. As seen in Figure 6, the outdoor environment is the most challenging,

due to the large distances between APs, prominent multi-path effects, and size of the

environment.

The time that each algorithm takes to incrementally add a new cluster into the

WiFi map is computed and the resulting training times are shown in Figure 7, where

the number of clusters are progressively increased from 20 to 100 as the robot explores

the map. It is important to note that 100 clusters accounts for a small map covering

an area ranging from 100 to 300 square meters and that is the reason why the training

process takes this little time in this example. Figure 7 does not include the Nearest

Neighbor Search since it does not require a training phase. Similarly, training time for

the Gaussian Process is omitted since it takes too long to train for online applications

(i.e., an average of 4.75 minutes for 100 clusters). The figure clearly shows that both the

14

Fig. 6 Average classification error, in meters, for each classification algorithm executed on
the UCM, Merced, RICE, CMU, USC, and HKUST datasets.

Random Forest and Support Vector Machine take too much time to train, especially

since they grow linearly and exponentially, respectively, as the number of clusters

increases. On the other hand, the Gaussian Model and Online Random Forest add

new clusters to a trained map in constant time, with speeds of 27.4ms and 2.5ms,

respectively.

Fig. 7 Average training time, in seconds, as the clusters increase during exploration. The
Nearest Neighbor Search is omitted since it does not need training. The Gaussian Process is
also omitted since it takes too long: 4.75 minutes on average for 100 clusters.

Not only is the training time important for real-world scenarios, but so is the clas-

sification time. Indeed, it does not matter how fast WiFi maps can be created, if they

take minutes to be exploited. Figure 8 shows, for each algorithm, the average time

to classify 10 observations. Both the Gaussian Process and Support Vector Machine

algorithms are omitted due to their slow classification speeds of 3.05s and 9.07s, respec-

tively, for maps containing 100 clusters. The trends for the remaining algorithms are

15

approximately constant, except for the Gaussian Model which is linear. Once again, the

Online Random Forest provides the fastest option, along with the Nearest Neighbor

Search.

Fig. 8 Average time, in milliseconds, it takes to classify 10 observations, as the number of
clusters increases during robot exploration. The Gaussian Process and Support Vector Machine
algorithms are omitted because they take too much time relative to the other algorithms (i.e.,
3.05 and 9.07 seconds, on average, for a map size of 100 clusters).

6 Monte Carlo Localization

6.1 Description

The Online Random Forest and its experimental results solve a classification problem,

where each new observation is classified independently of any other observations. For

robot exploration, it is advantageous to exploit the fact that a robot’s position and ob-

servation should be coherent within small time steps. The WiFi localizer should take

into account the robot’s previous location or, more precisely, the probability distribu-

tion of the robot’s previous location. We introduce the robot’s temporal and spatial

information into our WiFi localizer with a particle filter, whose algorithm comes from

the “standard” implementation presented by Thrun et al. [23]. Since we have already

shown the Online Random Forest to be very accurate for WiFi localization cast as

a classification problem, it will become an integral part of the MCL’s measurement

model. The robot’s motion model, which takes into account the robot’s translational

and rotational velocities, is exactly the same as in [23] (chapter 4). We implement a new

measurement model that takes into account results from the Online Random Forest.

Given a particle with Cartesian coordinate C and a new observation Z, the measure-

ment model computes the probability P (C|Z). We generate a probability distribution

P by observing that each tree in the Online Random Forest “votes” for one cluster

center Ci and the one with the most votes is chosen as the robot’s location. The votes

can be converted to the robot’s probability of being at a particular cluster’s center,

P (Ci|Z) = Vi/F , where Vi is the total number of votes received for cluster i and F is

16

the number of trees in the Online Random Forest. We exploit this information to com-

pute our Probability Density Function (PDF) as a Gaussian Mixture Model (GMM)

described in Algorithm 4.

The GMM in Algorithm 4 non-linearly diffuses, in two-dimensional Cartesian space,

results acquired from the Online Random Forest. Specifically, we build a GMM com-

posed of one mixture component for each cluster i (line 2). Each mixture component

represents a bivariate Gaussian distribution with a mean µi corresponding to the ith

cluster’s center Ci (line 3), a covariance matrix Σi (line 4), and a mixture weight φi
(line 5) proportional to the votes V deduced by classifying observation Z with the On-

line Random Forest (line 1). Line 5 highlights a key difference between the classification

and MCL methodologies. By taking the mode of the Online Random Forest’s results,

the classification discards valuable information that is instead exploited by the MCL.

Effectively, given an observation Z, the GMM represents the Online Random Forest’s

classification confidence across the set of every cluster’s center (in two-dimensional

space). It is important to note that a GMM is built for each new observation Z. Ad-

ditionally, the parameter σ2, which dictates how much the mixture components affect

each other, needs to be defined. We have empirically determined that setting σ2 to the

average distance between clusters’ centers provided good results for the GMM.

Algorithm 4 Construct-GMM(Z)

1: V ← Online-Random-Forest-Prediction(Z)
2: for i← 1 to p do
3: µi ← Ci

4: Σi ← σ2I
5: φi ← P (Ci|Z)← Vi/F
6: return gmm←Build-GMM(µ, Σ, φ)

With the aforementioned PDF, the measurement model becomes a simple algo-

rithm, whose pseudo-code is presented in Algorithm 5. It highlights the effectiveness of

our GMM implementation (line 1), which seamlessly integrates into the MCL’s mea-

surement model. Indeed, each particle i (line 2) is assigned a weight proportional to the

probability of being at the particle’s state given a WiFi observation Z. The particle’s

weight is retrieved by using the PDF of the GMM (line 3).

Algorithm 5 Measurement-Model(Z)

1: gmm← Construct-GMM(Z)
2: for i← 1 to n do
3: i.weight ← PDF(gmm, i.state(X,Y))

We conclude this subsection noting that although we opted for a particle filter,

there are alternative choices that one could explore. For example, one could incorporate

the outcome of the WiFi-based Online Random Forest as a measurement model for a

different Bayesian estimation method, such as the Extended Kalman Filter (EKF) or

the unscented Kalman filter (UKF) [23]. These possible extensions are left for future

work.

17

Fig. 9 Experimental results for indoor (top) and outdoor (bottom) scenarios, showing the
results of our WiFi localization (red) against ground truth (blue) and SLAM (black, indoor
only). For the outdoor scenario, GPS is used as “ground truth”.

6.2 Results

In this section, we evaluate our MCL algorithm, running with 5000 particles, on the

same indoor UCM and outdoor Merced datasets that were used for the classification

experiments (see Section 5.2). Since we do not have physical access to the environments

where the other datasets were collected, we cannot use the MCL on the other datasets.

Consequently, the Online Random Forest is trained by mappers exploring the UCM

and Merced datasets. For the indoor UCM environment (first column of Table 1), the

mappers covered approximately 150 meters, discovered 48 unique APs, and created

156 clusters, each encompassing at least 20 observations and separated, on average,

by 0.89 meters. For the outdoor Merced environment (second column of Table 1), the

mappers covered approximately 1.5 kilometers, discovered 231 unique APs, and created

720 clusters, each encompassing at least 7 observations and separated, on average,

by 1.96 meters. The localizers explore the same environments and localize strictly

exploiting WiFi signal strengths readings within our algorithmic framework. In order

to quantitatively analyze the MCL, an LRF and GPS receiver are mounted on the

localizers for the indoor and outdoor scenario, respectively. Please note that these two

sensors are only meant to generate pseudo-ground-truth and are not used as part of

the WiFi localization. The indoor and outdoor environments are each explored 10

different times. For each exploration, the MCL is performed 50 times to account for

the random nature of the MCL. After each measurement model update, we localize

the robot by computing the weighted mean of the particles and compute the error

18

between the MCL and pseudo-ground-truth (LRF SLAM or GPS, depending on the

environment). The average error for the 50 trials of the 10 indoor and 10 outdoor

explorations are 0.61 meters and 1.02 meters, respectively. These results show the power

of our MCL algorithm, since it increases the localization accuracy by 60% and 500%,

respectively, when compared to using the Online Random Forest on its own. Figure 9

provides a visualization for 1 indoor and 3 outdoor runs (superimposed on one map).

For the outdoor run, the localizers were always perfectly estimated on the sidewalk.

This outcome is logical, however, since the mapper was driven on the sidewalks and

the localizers use that data to localize.

The contribution of the proposed algorithm comes not only from its accuracy but

also from its efficiency, both in terms of training by the mappers and localization by

the localizers. Each time a mapper discovers a new Cartesian-observation pair Â, the

clustering algorithm runs with complexity O(log(p)), where p is the current number

of clusters. When the Cartesian-observation pair is added to a fixed cluster, the map-

per incorporates it into the Online Random Forest, a process with time complexity

O(Fa log(m)), where F is the number of trees in the forest, a is the number of APs

discovered (i.e., features), and m is the total number of observations. Comparatively,

and since the Random Forest has a time complexity of O(Fam log(m)), the Online

Random Forest has strictly smaller order of magnitude than its offline counterpart.

To localize, the localizers must make a prediction using the Online Random Forest in

O(F log(m)) and run the MCL, whose biggest time complexity comes from the mea-

surement model being computed for all n particles in O(np). These asymptotic time

complexities translate to real-world efficiency and allow the algorithms to run in real-

time on a consumer laptop. More specifically, a dual-core 2.5GHz laptop is, on average,

capable of incrementally clustering, adding an observation to the online random forest,

making a prediction, and running the MCL in 1.1ms, 2.5ms, 1.2ms, and 195.19ms,

respectively. The space complexity of the algorithm is insignificant and consequently

not discussed in great details, requiring less than 3MB on average and 22MB in the

worst-case.

As demonstrated by the numerous experiments performed in environments as large

as 1.5km, the theoretical observations, and the practical results, the proposed algorithm

is accurate, efficient, and scalable. Data and code used to present the results presented

in this paper are available to the public upon request to the authors.

7 Conclusions and Future work

We have presented a state-of-the-art WiFi localization algorithm that is capable of

localizing accurately and running in real-time. The algorithm solves major problems

found in other WiFi localizers, since it does not require robots to stop when acquiring

WiFi signal strength readings and can build WiFi maps incrementally as part of an

online process. The claims made throughout the paper are substantiated by a compre-

hensive set of experiments analyzing 5 different algorithms across 3 datasets accounting

for 4 kilometers of indoor and outdoor exploration. Together, all of the experiments

provide compelling evidence regarding the robustness of our approach. The algorithm’s

accuracy, speed, and low sensor requirements make it particularly suited for exploration

scenarios of heterogeneous robot teams consisting of many sensor-deprived (and inex-

pensive) robots. Autonomous robot navigation and control using the WiFi localizer

is an interesting future direction and is also being used to enable heterogeneous map

19

merging [11].

Numerous directions for future research are possible. First, and similarly to what we

did with other map types [7,12], it would be interesting to develop methods that merge,

in a principled way, multiple WiFi maps independently developed by multiple mappers

operating in a shared environment and occasionally exchanging their data. The cluster-

ing strategy could also be improved, with backtracking being an attractive modification

(i.e., reconsider clusters that have previously been fixed in order to optimize new data

points and new clusters). Additionally, our clustering algorithm could be substituted

or combined with a parallel implementation capable of processing batches of data with

the objective of maximizing localization accuracy. Finally, and as formerly mentioned,

one could also explore the use of alternative Bayesian estimation techniques, such as

EKF/UKF.

References

1. P. Bahl and V. Padmanabhan. RADAR: An in-building RF-based user location and
tracking system. In IEEE International Conference on Computer Communications, pages
775–784, 2000.

2. B. Balaguer, G. Erinc, and S. Carpin. Combining classification and regression for WiFi
localization of heterogeneous robot teams in unknown environments. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 3496–3503, 2012.

3. J. Biswas and M. Veloso. WiFi localization and navigation for autonomous indoor mobile
robots. In IEEE International Conference on Robotics and Automation, pages 4379–4384,
2010.

4. W. Braun and U. Dersch. A physical mobile radio channel model. IEEE Transactions on
Vehicular Technology, 40(2):472–482, 1991.

5. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
6. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.

CRC Press, Boca Raton, FL, 1984.
7. S. Carpin. Fast and accurate map merging for multi-robot systems. Autonomous Robots,

25(3):305–316, 2008.
8. K. Chen and C. Guestrin. Wifi cmu. http://select.cs.cmu.edu/data/index.html, 2009.
9. F. Duvallet and A. Tews. WiFi position estimation in industrial environments using

Gaussian processes. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2216–2221, 2008.

10. L. Eddy and S. Wai. Lego robot guided by wi-fi devices. Technical Report 271-QYA2,
The Hong Kong University of Science and Technology, 2010.

11. G. Erinc, B. Balaguer, and S. Carpin. Heterogeneous map merging using wifi signals”.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 5258–5264, 2013.

12. G. Erinc and S. Carpin. Anytime merging of appearance-based maps. Autonomous Robots,
36(3):241–256, 2014.

13. B. Ferris, D. Fox, and N. Lawrence. WiFi-SLAM using Gaussian process latent variable
models. In International Joint Conferences on Artificial Intelligence, pages 2480–2485,
2007.

14. B. Ferris, D. Hahnel, and D. Fox. Gaussian processes for signal strength-based location
estimation. In Robotics: Science and Systems, pages 303–310, 2006.

15. J. Fink, N. Michael, A. Kushleyev, and V. Kumar. Experimental characterization of radio
signal propagation in indoor environments with application to estimation and control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2834–2839,
2009.

16. A. Goldsmith. Wireless Communications. Cambridge Press, 2005.
17. A. Howard, S. Siddiqi, and G. Sukhatme. An experimental study of localization using

wireless ethernet. In International Conference on Field and Service Robotics, 2003.
18. J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. Efficient,

generalized indoor WiFi GraphSLAM. In IEEE International Conference on Robotics
and Automation, pages 1038–1043, 2011.

20

19. D. Koutsonikolas, S. Das, Y. Hu, Y. Lu, and C. Lee. CoCoA: Coordinated cooperative
localization for mobile multi-robot ad hoc networks. Ad Hoc & Sensor Wireless Networks,
3(4):331–352, 2007.

20. A. Ladd, K. Bekris, A. Rudys, D. Wallach, and L. Kavraki. On the feasibility of using
wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation,
20(3):555–559, 2004.

21. N. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and Statis-
tics, pages 105–112, 2001.

22. A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof. On-line random forests. In
Workshop on “On-line Learning for Computer Vision” at IEEE ICCV, 2009.

23. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics, chapter 5,8. The MIT Press,
Cambridge, Massachusetts, 2005.

24. D. Tran and T. Nguyen. Localization in wireless sensor networks based on support vector
machines. IEEE Transactions on Parallel and Distributed Systems, 19(7):981–994, 2008.

25. M. Youssef, A. Agrawala, A. Shankar, and S. Noh. A probabilistic clustering-based indoor
location determination system. Technical Report CS-TR-4350, University of Maryland,
College Park, 2002.

26. S. Zickler and M. Veloso. RSS-based relative localization and tethering for moving robots in
unknown environments. In IEEE International Conference on Robotics and Automation,
pages 5466–5471, 2010.

